Processing math: 100%

The Stacks project

Lemma 78.12.4. Let B \to S as in Section 78.3. Consider a morphism f : (U, R, s, t, c) \to (U', R', s', t', c') of groupoids in algebraic spaces over B. Assume that

  1. f : U \to U' is quasi-compact and quasi-separated,

  2. the square

    \xymatrix{ R \ar[d]_ t \ar[r]_ f & R' \ar[d]^{t'} \\ U \ar[r]^ f & U' }

    is cartesian, and

  3. s' and t' are flat.

Then pushforward f_* given by

(\mathcal{F}, \alpha ) \mapsto (f_*\mathcal{F}, f_*\alpha )

defines a functor from the category of quasi-coherent sheaves on (U, R, s, t, c) to the category of quasi-coherent sheaves on (U', R', s', t', c') which is right adjoint to pullback as defined in Lemma 78.12.3.

Proof. Since U \to U' is quasi-compact and quasi-separated we see that f_* transforms quasi-coherent sheaves into quasi-coherent sheaves (Morphisms of Spaces, Lemma 67.11.2). Moreover, since the squares

\vcenter { \xymatrix{ R \ar[d]_ t \ar[r]_ f & R' \ar[d]^{t'} \\ U \ar[r]^ f & U' } } \quad \text{and}\quad \vcenter { \xymatrix{ R \ar[d]_ s \ar[r]_ f & R' \ar[d]^{s'} \\ U \ar[r]^ f & U' } }

are cartesian we find that (t')^*f_*\mathcal{F} = f_*t^*\mathcal{F} and (s')^*f_*\mathcal{F} = f_*s^*\mathcal{F} , see Cohomology of Spaces, Lemma 69.11.2. Thus it makes sense to think of f_*\alpha as a map (t')^*f_*\mathcal{F} \to (s')^*f_*\mathcal{F}. A similar argument shows that f_*\alpha satisfies the cocycle condition. The functor is adjoint to the pullback functor since pullback and pushforward on modules on ringed spaces are adjoint. Some details omitted. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 78.12: Quasi-coherent sheaves on groupoids

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.