Lemma 67.11.2. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. If $f$ is quasi-compact and quasi-separated, then $f_*$ transforms quasi-coherent $\mathcal{O}_ X$-modules into quasi-coherent $\mathcal{O}_ Y$-modules.
Proof. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. We have to show that $f_*\mathcal{F}$ is a quasi-coherent sheaf on $Y$. For this it suffices to show that for any affine scheme $V$ and étale morphism $V \to Y$ the restriction of $f_*\mathcal{F}$ to $V$ is quasi-coherent, see Properties of Spaces, Lemma 66.29.6. Let $f' : V \times _ Y X \to V$ be the base change of $f$ by $V \to Y$. Note that $f'$ is also quasi-compact and quasi-separated, see Lemmas 67.8.4 and 67.4.4. By (67.11.1.1) we know that the restriction of $f_*\mathcal{F}$ to $V$ is $f'_*$ of the restriction of $\mathcal{F}$ to $V \times _ Y X$. Hence we may replace $f$ by $f'$, and assume that $Y$ is an affine scheme.
Assume $Y$ is an affine scheme. Since $f$ is quasi-compact we see that $X$ is quasi-compact. Thus we may choose an affine scheme $U$ and a surjective étale morphism $U \to X$, see Properties of Spaces, Lemma 66.6.3. By Lemma 67.11.1 we get an exact sequence
where $R = U \times _ X U$. As $X \to Y$ is quasi-separated we see that $R \to U \times _ Y U$ is a quasi-compact monomorphism. This implies that $R$ is a quasi-compact separated scheme (as $U$ and $Y$ are affine at this point). Hence $a : U \to Y$ and $b : R \to Y$ are quasi-compact and quasi-separated morphisms of schemes. Thus by Descent, Proposition 35.9.4 the sheaves $a_*(\mathcal{F}|_ U)$ and $b_*(\mathcal{F}|_ R)$ are quasi-coherent (see also the discussion preceding this lemma). This implies that $f_*\mathcal{F}$ is a kernel of quasi-coherent modules, and hence itself quasi-coherent, see Properties of Spaces, Lemma 66.29.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #438 by Kestutis Cesnavicius on
Comment #440 by Johan on