The Stacks project

Lemma 65.29.6. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. The following are equivalent

  1. $\mathcal{F}$ is a quasi-coherent $\mathcal{O}_ X$-module,

  2. there exists an étale morphism $f : Y \to X$ of algebraic spaces over $S$ with $|f| : |Y| \to |X|$ surjective such that $f^*\mathcal{F}$ is quasi-coherent on $Y$,

  3. there exists a scheme $U$ and a surjective étale morphism $\varphi : U \to X$ such that $\varphi ^*\mathcal{F}$ is a quasi-coherent $\mathcal{O}_ U$-module, and

  4. for every affine scheme $U$ and étale morphism $\varphi : U \to X$ the restriction $\varphi ^*\mathcal{F}$ is a quasi-coherent $\mathcal{O}_ U$-module.

Proof. It is clear that (1) implies (2) by considering $\text{id}_ X$. Assume $f : Y \to X$ is as in (2), and let $V \to Y$ be a surjective étale morphism from a scheme towards $Y$. Then the composition $V \to X$ is surjective étale as well and by Lemma 65.29.2 the pullback of $\mathcal{F}$ to $V$ is quasi-coherent as well. Hence we see that (2) implies (3).

Let $U \to X$ be as in (3). Let us use the abuse of notation introduced in Equation ( As $\mathcal{F}|_{U_{\acute{e}tale}}$ is quasi-coherent there exists an étale covering $\{ U_ i \to U\} $ such that $\mathcal{F}|_{U_{i, {\acute{e}tale}}}$ has a global presentation, see Modules on Sites, Definition 18.17.1 and Lemma 18.23.3. Let $V \to X$ be an object of $X_{\acute{e}tale}$. Since $U \to X$ is surjective and étale, the family of maps $\{ U_ i \times _ X V \to V\} $ is an étale covering of $V$. Via the morphisms $U_ i \times _ X V \to U_ i$ we can restrict the global presentations of $\mathcal{F}|_{U_{i, {\acute{e}tale}}}$ to get a global presentation of $\mathcal{F}|_{(U_ i \times _ X V)_{\acute{e}tale}}$ Hence the sheaf $\mathcal{F}$ on $X_{\acute{e}tale}$ satisfies the condition of Modules on Sites, Definition 18.23.1 and hence is quasi-coherent.

The equivalence of (3) and (4) comes from the fact that any scheme has an affine open covering. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03M0. Beware of the difference between the letter 'O' and the digit '0'.