Remark 19.13.3. In the chapter on derived categories we consistently work with “small” abelian categories (as is the convention in the Stacks project). For a “big” abelian category $\mathcal{A}$ it isn't clear that the derived category $D(\mathcal{A})$ exists because it isn't clear that morphisms in the derived category are sets. In general this isn't true, see Examples, Lemma 109.61.1. However, if $\mathcal{A}$ is a Grothendieck abelian category, and given $K^\bullet , L^\bullet $ in $K(\mathcal{A})$, then by Theorem 19.12.6 there exists a quasi-isomorphism $L^\bullet \to I^\bullet $ to a K-injective complex $I^\bullet $ and Derived Categories, Lemma 13.31.2 shows that

which is a set. Some examples of Grothendieck abelian categories are the category of modules over a ring, or more generally the category of sheaves of modules on a ringed site.

## Comments (0)