Lemma 20.27.3. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. There is a canonical bifunctorial isomorphism

for $\mathcal{F}^\bullet , \mathcal{G}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (D(X))$.

Lemma 20.27.3. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. There is a canonical bifunctorial isomorphism

\[ Lf^*( \mathcal{F}^\bullet \otimes _{\mathcal{O}_ Y}^{\mathbf{L}} \mathcal{G}^\bullet ) = Lf^*\mathcal{F}^\bullet \otimes _{\mathcal{O}_ X}^{\mathbf{L}} Lf^*\mathcal{G}^\bullet \]

for $\mathcal{F}^\bullet , \mathcal{G}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (D(X))$.

**Proof.**
We may assume that $\mathcal{F}^\bullet $ and $\mathcal{G}^\bullet $ are K-flat complexes. In this case $\mathcal{F}^\bullet \otimes _{\mathcal{O}_ Y}^{\mathbf{L}} \mathcal{G}^\bullet $ is just the total complex associated to the double complex $\mathcal{F}^\bullet \otimes _{\mathcal{O}_ Y} \mathcal{G}^\bullet $. By Lemma 20.26.5 $\text{Tot}(\mathcal{F}^\bullet \otimes _{\mathcal{O}_ Y} \mathcal{G}^\bullet )$ is K-flat also. Hence the isomorphism of the lemma comes from the isomorphism

\[ \text{Tot}(f^*\mathcal{F}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{G}^\bullet ) \longrightarrow f^*\text{Tot}(\mathcal{F}^\bullet \otimes _{\mathcal{O}_ Y} \mathcal{G}^\bullet ) \]

whose constituents are the isomorphisms $f^*\mathcal{F}^ p \otimes _{\mathcal{O}_ X} f^*\mathcal{G}^ q \to f^*(\mathcal{F}^ p \otimes _{\mathcal{O}_ Y} \mathcal{G}^ q)$ of Modules, Lemma 17.15.4. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)