Lemma 20.27.4. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. There is a canonical bifunctorial isomorphism
for $\mathcal{F}^\bullet $ in $D(\mathcal{O}_ X)$ and $\mathcal{G}^\bullet $ in $D(\mathcal{O}_ Y)$.
Lemma 20.27.4. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. There is a canonical bifunctorial isomorphism
for $\mathcal{F}^\bullet $ in $D(\mathcal{O}_ X)$ and $\mathcal{G}^\bullet $ in $D(\mathcal{O}_ Y)$.
Proof. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module and let $\mathcal{G}$ be an $\mathcal{O}_ Y$-module. Then $\mathcal{F} \otimes _{\mathcal{O}_ X} f^*\mathcal{G} = \mathcal{F} \otimes _{f^{-1}\mathcal{O}_ Y} f^{-1}\mathcal{G}$ because $f^*\mathcal{G} = \mathcal{O}_ X \otimes _{f^{-1}\mathcal{O}_ Y} f^{-1}\mathcal{G}$. The lemma follows from this and the definitions. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: