The Stacks project

Lemma 21.13.5. Let $\mathcal{C}$ be a site. Let $\mathcal{F}$ be an abelian sheaf. If

  1. $H^ p(U, \mathcal{F}) = 0$ for $p > 0$ and $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, and

  2. for every surjection $K' \to K$ of sheaves of sets the extended Čech complex

    \[ 0 \to H^0(K, \mathcal{F}) \to H^0(K', \mathcal{F}) \to H^0(K' \times _ K K', \mathcal{F}) \to \ldots \]

    is exact,

then $\mathcal{F}$ is totally acyclic (and the converse holds too).

Proof. By assumption (1) we have $H^ p(h_ U^\# , g^{-1}\mathcal{I}) = 0$ for all $p > 0$ and all objects $U$ of $\mathcal{C}$. Note that if $K = \coprod K_ i$ is a coproduct of sheaves of sets on $\mathcal{C}$ then $H^ p(K, g^{-1}\mathcal{I}) = \prod H^ p(K_ i, g^{-1}\mathcal{I})$. For any sheaf of sets $K$ there exists a surjection

\[ K' = \coprod h_{U_ i}^\# \longrightarrow K \]

see Sites, Lemma 7.12.5. Thus we conclude that: (*) for every sheaf of sets $K$ there exists a surjection $K' \to K$ of sheaves of sets such that $H^ p(K', \mathcal{F}) = 0$ for $p > 0$. We claim that (*) and condition (2) imply that $\mathcal{F}$ is totally acyclic. Note that conditions (*) and (2) only depend on $\mathcal{F}$ as an object of the topos $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ and not on the underlying site. (We will not use property (1) in the rest of the proof.)

We are going to prove by induction on $n \geq 0$ that (*) and (2) imply the following induction hypothesis $IH_ n$: $H^ p(K, \mathcal{F}) = 0$ for all $0 < p \leq n$ and all sheaves of sets $K$. Note that $IH_0$ holds. Assume $IH_ n$. Pick a sheaf of sets $K$. Pick a surjection $K' \to K$ such that $H^ p(K', \mathcal{F}) = 0$ for all $p > 0$. We have a spectral sequence with

\[ E_1^{p, q} = H^ q(K'_ p, \mathcal{F}) \]

covering to $H^{p + q}(K, \mathcal{F})$, see Lemma 21.13.2. By $IH_ n$ we see that $E_1^{p, q} = 0$ for $0 < q \leq n$ and by assumption (2) we see that $E_2^{p, 0} = 0$ for $p > 0$. Finally, we have $E_1^{0, q} = 0$ for $q > 0$ because $H^ q(K', \mathcal{F}) = 0$ by choice of $K'$. Hence we conclude that $H^{n + 1}(K, \mathcal{F}) = 0$ because all the terms $E_2^{p, q}$ with $p + q = n + 1$ are zero. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07A1. Beware of the difference between the letter 'O' and the digit '0'.