Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Example 21.32.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{K}^\bullet $ be a bounded above complex of $\mathcal{O}$-modules. Let $\mathcal{F}$ be an $\mathcal{O}$-module. Then there is a spectral sequence with $E_2$-page

\[ E_2^{i, j} = \mathop{\mathrm{Ext}}\nolimits _\mathcal {O}^ i(H^{-j}(\mathcal{K}^\bullet ), \mathcal{F}) \Rightarrow \mathop{\mathrm{Ext}}\nolimits _\mathcal {O}^{i + j}(\mathcal{K}^\bullet , \mathcal{F}) \]

and another spectral sequence with $E_1$-page

\[ E_1^{i, j} = \mathop{\mathrm{Ext}}\nolimits _\mathcal {O}^ j(\mathcal{K}^{-i}, \mathcal{F}) \Rightarrow \mathop{\mathrm{Ext}}\nolimits _\mathcal {O}^{i + j}(\mathcal{K}^\bullet , \mathcal{F}). \]

To construct these spectral sequences choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet $ and consider the two spectral sequences coming from the double complex $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{K}^\bullet , \mathcal{I}^\bullet )$, see Homology, Section 12.25.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.