Lemma 16.2.4. Let $R$ be a ring. Let $A = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ m)$ and write $I = (f_1, \ldots , f_ m)$. Let $a \in A$. Then (16.2.3.3) implies there exists an $A$-linear map $\psi : \bigoplus \nolimits _{i = 1, \ldots , n} A \text{d}x_ i \to A^{\oplus c}$ such that the composition

is multiplication by $a$. Conversely, if such a $\psi $ exists, then $a^ c$ satisfies (16.2.3.3).

## Comments (0)

There are also: