Definition 16.2.3. Let $R \to A$ be a ring map of finite presentation. We say an element $a \in A$ is elementary standard in $A$ over $R$ if there exists a presentation $A = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ m)$ and $0 \leq c \leq \min (n, m)$ such that

16.2.3.1
$$\label{smoothing-equation-elementary-standard-one} a = a' \det (\partial f_ j/\partial x_ i)_{i, j = 1, \ldots , c}$$

for some $a' \in A$ and

16.2.3.2
$$\label{smoothing-equation-elementary-standard-two} a f_{c + j} \in (f_1, \ldots , f_ c) + (f_1, \ldots , f_ m)^2$$

for $j = 1, \ldots , m - c$. We say $a \in A$ is strictly standard in $A$ over $R$ if there exists a presentation $A = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ m)$ and $0 \leq c \leq \min (n, m)$ such that

16.2.3.3
$$\label{smoothing-equation-strictly-standard-one} a = \sum \nolimits _{I \subset \{ 1, \ldots , n\} ,\ |I| = c} a_ I \det (\partial f_ j/\partial x_ i)_{j = 1, \ldots , c,\ i \in I}$$

for some $a_ I \in A$ and

16.2.3.4
$$\label{smoothing-equation-strictly-standard-two} a f_{c + j} \in (f_1, \ldots , f_ c) + (f_1, \ldots , f_ m)^2$$

for $j = 1, \ldots , m - c$.

There are also:

• 4 comment(s) on Section 16.2: Singular ideals

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).