Remark 23.3.5. The forgetful functor $(A, I, \gamma ) \mapsto A$ does not commute with colimits. For example, let
be a pushout in the category of divided power rings. Then in general the map $B \otimes _ A B' \to B''$ isn't an isomorphism. (It is always surjective.) An explicit example is given by $(A, I, \gamma ) = (\mathbf{Z}, (0), \emptyset )$, $(B, J, \delta ) = (\mathbf{Z}/4\mathbf{Z}, 2\mathbf{Z}/4\mathbf{Z}, \delta )$, and $(B', J', \delta ') = (\mathbf{Z}/4\mathbf{Z}, 2\mathbf{Z}/4\mathbf{Z}, \delta ')$ where $\delta _2(2) = 2$ and $\delta '_2(2) = 0$. More precisely, using Lemma 23.5.3 we let $\delta $, resp. $\delta '$ be the unique divided power structure on $J$, resp. $J'$ such that $\delta _2 : J \to J$, resp. $\delta '_2 : J' \to J'$ is the map $0 \mapsto 0, 2 \mapsto 2$, resp. $0 \mapsto 0, 2 \mapsto 0$. Then $(B'', J'', \delta '') = (\mathbf{F}_2, (0), \emptyset )$ which doesn't agree with the tensor product. However, note that it is always true that
as can be seen from the universal property of the pushout by considering maps into divided power algebras of the form $(C, (0), \emptyset )$.
Comments (3)
Comment #7050 by nkym on
Comment #7051 by Johan on
Comment #7243 by Johan on
There are also: