Lemma 15.86.7. With notation as in Lemma 15.86.6 the long exact cohomology sequence associated to the distinguished triangle breaks up into short exact sequences

$0 \to R^1\mathop{\mathrm{lim}}\nolimits _ n H^{p - 1}(K_ n^\bullet ) \to H^ p(R\mathop{\mathrm{lim}}\nolimits K) \to \mathop{\mathrm{lim}}\nolimits _ n H^ p(K_ n^\bullet ) \to 0$

Proof. The long exact sequence of the distinguished triangle is

$\ldots \to H^ p(R\mathop{\mathrm{lim}}\nolimits K) \to \prod \nolimits _ n H^ p(K_ n^\bullet ) \to \prod \nolimits _ n H^ p(K_ n^\bullet ) \to H^{p + 1}(R\mathop{\mathrm{lim}}\nolimits K) \to \ldots$

The map in the middle has kernel $\mathop{\mathrm{lim}}\nolimits _ n H^ p(K_ n^\bullet )$ by its explicit description given in the lemma. The cokernel of this map is $R^1\mathop{\mathrm{lim}}\nolimits _ n H^ p(K_ n^\bullet )$ by Lemma 15.86.1. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).