Lemma 15.86.8. Let $(K_ n)$ be an inverse system of objects of $D(\textit{Ab})$. Then there exists an object $M = (M_ n^\bullet )$ of $D(\textit{Ab}(\mathbf{N}))$ and isomorphisms $M_ n^\bullet \to K_ n$ in $D(\textit{Ab})$ such that the diagrams

$\xymatrix{ M_{n + 1}^\bullet \ar[d] \ar[r] & M_ n^\bullet \ar[d] \\ K_{n + 1} \ar[r] & K_ n }$

commute in $D(\textit{Ab})$.

Proof. Namely, let $M_1^\bullet$ be a complex of abelian groups representing $K_1$. Suppose we have constructed $M_ e^\bullet \to M_{e - 1}^\bullet \to \ldots \to M_1^\bullet$ and maps $\psi _ i : M_ i^\bullet \to K_ i$ such that the diagrams in the statement of the lemma commute for all $n < e$. Then we consider the diagram

$\xymatrix{ & M_ n^\bullet \ar[d]^{\psi _ n} \\ K_{n + 1} \ar[r] & K_ n }$

in $D(\textit{Ab})$. By the definition of morphisms in $D(\textit{Ab})$ we can find a complex $M_{n + 1}^\bullet$ of abelian groups, an isomorphism $M_{n + 1}^\bullet \to K_{n + 1}$ in $D(\textit{Ab})$, and a morphism of complexes $M_{n + 1}^\bullet \to M_ n^\bullet$ representing the composition

$K_{n + 1} \to K_ n \xrightarrow {\psi _ n^{-1}} M_ n^\bullet$

in $D(\textit{Ab})$. Thus the lemma holds by induction. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).