Lemma 59.17.2. Let $D$ and $D(n)$ be as in (59.17.0.1) and (59.17.0.4). Then $(D, \bar J, \bar\gamma )$ and $(D(n), \bar J(n), \bar\gamma (n))$ are objects of $\text{Cris}^\wedge (C/A)$, see Remark 59.5.4, and

$D(n) = \coprod \nolimits _{j = 0, \ldots , n} D$

in $\text{Cris}^\wedge (C/A)$.

Proof. The first assertion is clear. For the second, if $(B \to C, \delta )$ is an object of $\text{Cris}^\wedge (C/A)$, then we have

$\mathop{Mor}\nolimits _{\text{Cris}^\wedge (C/A)}(D, B) = \mathop{\mathrm{Hom}}\nolimits _ A((P, J), (B, \mathop{\mathrm{Ker}}(B \to C)))$

and similarly for $D(n)$ replacing $(P, J)$ by $(P \otimes _ A \ldots \otimes _ A P, J(n))$. The property on coproducts follows as $P \otimes _ A \ldots \otimes _ A P$ is a coproduct. $\square$

## Comments (0)

There are also:

• 2 comment(s) on Section 59.17: Crystals in quasi-coherent modules

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07L4. Beware of the difference between the letter 'O' and the digit '0'.