Lemma 60.17.2. Let $D$ and $D(n)$ be as in (60.17.0.1) and (60.17.0.4). Then $(D, \bar J, \bar\gamma )$ and $(D(n), \bar J(n), \bar\gamma (n))$ are objects of $\text{Cris}^\wedge (C/A)$, see Remark 60.5.4, and

in $\text{Cris}^\wedge (C/A)$.

Lemma 60.17.2. Let $D$ and $D(n)$ be as in (60.17.0.1) and (60.17.0.4). Then $(D, \bar J, \bar\gamma )$ and $(D(n), \bar J(n), \bar\gamma (n))$ are objects of $\text{Cris}^\wedge (C/A)$, see Remark 60.5.4, and

\[ D(n) = \coprod \nolimits _{j = 0, \ldots , n} D \]

in $\text{Cris}^\wedge (C/A)$.

**Proof.**
The first assertion is clear. For the second, if $(B \to C, \delta )$ is an object of $\text{Cris}^\wedge (C/A)$, then we have

\[ \mathop{\mathrm{Mor}}\nolimits _{\text{Cris}^\wedge (C/A)}(D, B) = \mathop{\mathrm{Hom}}\nolimits _ A((P, J), (B, \mathop{\mathrm{Ker}}(B \to C))) \]

and similarly for $D(n)$ replacing $(P, J)$ by $(P \otimes _ A \ldots \otimes _ A P, J(n))$. The property on coproducts follows as $P \otimes _ A \ldots \otimes _ A P$ is a coproduct. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: