Theorem 60.26.4. In Situation 60.26.1 let (\mathcal{E}, F_\mathcal {E}) be a nondegenerate F-crystal. Assume A is a p-adically complete Noetherian ring and that X \to S_0 is proper smooth. Then the canonical map
F_\mathcal {E} \circ (F_ X)_{\text{cris}}^* : R\Gamma (\text{Cris}(X/S), \mathcal{E}) \otimes ^\mathbf {L}_{A, \sigma } A \longrightarrow R\Gamma (\text{Cris}(X/S), \mathcal{E})
becomes an isomorphism after inverting p.
Proof.
We first write the arrow as a composition of three arrows. Namely, set
X^{(1)} = X \times _{S_0, F_{S_0}} S_0
and denote F_{X/S_0} : X \to X^{(1)} the relative Frobenius morphism. Denote \mathcal{E}^{(1)} the base change of \mathcal{E} by \mathop{\mathrm{Spec}}(\sigma ), in other words the pullback of \mathcal{E} to \text{Cris}(X^{(1)}/S) by the morphism of crystalline topoi associated to the commutative diagram
\xymatrix{ X^{(1)} \ar[r] \ar[d] & X \ar[d] \\ S \ar[r]^{\mathop{\mathrm{Spec}}(\sigma )} & S }
Then we have the base change map
60.26.4.1
\begin{equation} \label{crystalline-equation-base-change-sigma} R\Gamma (\text{Cris}(X/S), \mathcal{E}) \otimes ^\mathbf {L}_{A, \sigma } A \longrightarrow R\Gamma (\text{Cris}(X^{(1)}/S), \mathcal{E}^{(1)}) \end{equation}
see Remark 60.24.8. Note that the composition of F_{X/S_0} : X \to X^{(1)} with the projection X^{(1)} \to X is the absolute Frobenius morphism F_ X. Hence we see that F_{X/S_0}^*\mathcal{E}^{(1)} = (F_ X)_{\text{cris}}^*\mathcal{E}. Thus pullback by F_{X/S_0} is a map
60.26.4.2
\begin{equation} \label{crystalline-equation-to-prove} F_{X/S_0}^* : R\Gamma (\text{Cris}(X^{(1)}/S), \mathcal{E}^{(1)}) \longrightarrow R\Gamma (\text{Cris}(X/S), (F_ X)^*_{\text{cris}}\mathcal{E}) \end{equation}
Finally we can use F_\mathcal {E} to get a map
60.26.4.3
\begin{equation} \label{crystalline-equation-F-E} R\Gamma (\text{Cris}(X/S), (F_ X)^*_{\text{cris}}\mathcal{E}) \longrightarrow R\Gamma (\text{Cris}(X/S), \mathcal{E}) \end{equation}
The map of the theorem is the composition of the three maps (60.26.4.1), (60.26.4.2), and (60.26.4.3) above. The first is a quasi-isomorphism modulo all powers of p by Remark 60.24.9. Hence it is a quasi-isomorphism since the complexes involved are perfect in D(A) see Remark 60.24.13. The third map is a quasi-isomorphism after inverting p simply because F_\mathcal {E} has an inverse up to a power of p, see Remark 60.26.3. Finally, the second is an isomorphism after inverting p by Lemma 60.25.6.
\square
Comments (0)