The Stacks project

Lemma 15.46.2. Let $k \subset K$ be a field extension. Assume $k$ has characteristic $p > 0$. Let $\{ x_ i\} $ be a subset of $K$. The following are equivalent

  1. the elements $\{ x_ i\} $ are $p$-independent over $k$, and

  2. the elements $\text{d}x_ i$ are $K$-linearly independent in $\Omega _{K/k}$.

Any $p$-independent collection can be extended to a $p$-basis of $K$ over $k$. In particular, the field $K$ has a $p$-basis over $k$. Moreover, the following are equivalent:

  1. $\{ x_ i\} $ is a $p$-basis of $K$ over $k$, and

  2. $\text{d}x_ i$ is a basis of the $K$-vector space $\Omega _{K/k}$.

Proof. Assume (2) and suppose that $\sum a_ E x^ E = 0$ is a linear relation with $a_ E \in k K^ p$. Let $\theta _ i : K \to K$ be a $k$-derivation such that $\theta _ i(x_ j) = \delta _{ij}$ (Kronecker delta). Note that any $k$-derivation of $K$ annihilates $kK^ p$. Applying $\theta _ i$ to the given relation we obtain new relations

\[ \sum \nolimits _{E, e_ i > 0} e_ i a_ E x_1^{e_1}\ldots x_ i^{e_ i - 1} \ldots x_ n^{e_ n} = 0 \]

Hence if we pick $\sum a_ E x^ E$ as the relation with minimal total degree $|E| = \sum e_ i$ for some $a_ E \not= 0$, then we get a contradiction. Hence (1) holds.

If $\{ x_ i\} $ is a $p$-basis for $K$ over $k$, then $K \cong kK^ p[X_ i]/(X_ i^ p - x_ i^ p)$. Hence we see that $\text{d}x_ i$ forms a basis for $\Omega _{K/k}$ over $K$. Thus (a) implies (b).

Let $\{ x_ i\} $ be a $p$-independent subset of $K$ over $k$. An application of Zorn's lemma shows that we can enlarge this to a maximal $p$-independent subset of $K$ over $k$. We claim that any maximal $p$-independent subset $\{ x_ i\} $ of $K$ is a $p$-basis of $K$ over $k$. The claim will imply that (1) implies (2) and establish the existence of $p$-bases. To prove the claim let $L$ be the subfield of $K$ generated by $kK^ p$ and the $x_ i$. We have to show that $L = K$. If $x \in K$ but $x \not\in L$, then $x^ p \in L$ and $L(x) \cong L[z]/(z^ p - x)$. Hence $\{ x_ i\} \cup \{ x\} $ is $p$-independent over $k$, a contradiction.

Finally, we have to show that (b) implies (a). By the equivalence of (1) and (2) we see that $\{ x_ i\} $ is a maximal $p$-independent subset of $K$ over $k$. Hence by the claim above it is a $p$-basis. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 15.46: Field extensions, revisited

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07P2. Beware of the difference between the letter 'O' and the digit '0'.