The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

15.45 Field extensions, revisited

In this section we study some peculiarities of field extensions in characteristic $p > 0$.

Definition 15.45.1. Let $p$ be a prime number. Let $k \to K$ be an extension of fields of characteristic $p$. Denote $kK^ p$ the compositum of $k$ and $K^ p$ in $K$.

  1. A subset $\{ x_ i\} \subset K$ is called p-independent over $k$ if the elements $x^ E = \prod x_ i^{e_ i}$ where $0 \leq e_ i < p$ are linearly independent over $kK^ p$.

  2. A subset $\{ x_ i\} $ of $K$ is called a p-basis of $K$ over $k$ if the elements $x^ E$ form a basis of $K$ over $kK^ p$.

This is related to the notion of a $p$-basis of a $\mathbf{F}_ p$-algebra which we will discuss later (insert future reference here).

Lemma 15.45.2. Let $k \subset K$ be a field extension. Assume $k$ has characteristic $p > 0$. Let $\{ x_ i\} $ be a subset of $K$. The following are equivalent

  1. the elements $\{ x_ i\} $ are $p$-independent over $k$, and

  2. the elements $\text{d}x_ i$ are $K$-linearly independent in $\Omega _{K/k}$.

Any $p$-independent collection can be extended to a $p$-basis of $K$ over $k$. In particular, the field $K$ has a $p$-basis over $k$. Moreover, the following are equivalent:

  1. $\{ x_ i\} $ is a $p$-basis of $K$ over $k$, and

  2. $\text{d}x_ i$ is a basis of the $K$-vector space $\Omega _{K/k}$.

Proof. Assume (2) and suppose that $\sum a_ E x^ E = 0$ is a linear relation with $a_ E \in k K^ p$. Let $\theta _ i : K \to K$ be a $k$-derivation such that $\theta _ i(x_ j) = \delta _{ij}$ (Kronecker delta). Note that any $k$-derivation of $K$ annihilates $kK^ p$. Applying $\theta _ i$ to the given relation we obtain new relations

\[ \sum \nolimits _{E, e_ i > 0} e_ i a_ E x_1^{e_1}\ldots x_ i^{e_ i - 1} \ldots x_ n^{e_ n} = 0 \]

Hence if we pick $\sum a_ E x^ E$ as the relation with minimal total degree $|E| = \sum e_ i$ for some $a_ E \not= 0$, then we get a contradiction. Hence (2) holds.

If $\{ x_ i\} $ is a $p$-basis for $K$ over $k$, then $K \cong kK^ p[X_ i]/(X_ i^ p - x_ i^ p)$. Hence we see that $\text{d}x_ i$ forms a basis for $\Omega _{K/k}$ over $K$. Thus (a) implies (b).

Let $\{ x_ i\} $ be a $p$-independent subset of $K$ over $k$. An application of Zorn's lemma shows that we can enlarge this to a maximal $p$-independent subset of $K$ over $k$. We claim that any maximal $p$-independent subset $\{ x_ i\} $ of $K$ is a $p$-basis of $K$ over $k$. The claim will imply that (1) implies (2) and establish the existence of $p$-bases. To prove the claim let $L$ be the subfield of $K$ generated by $kK^ p$ and the $x_ i$. We have to show that $L = K$. If $x \in K$ but $x \not\in L$, then $x^ p \in L$ and $L(x) \cong L[z]/(z^ p - x)$. Hence $\{ x_ i\} \cup \{ x\} $ is $p$-independent over $k$, a contradiction.

Finally, we have to show that (b) implies (a). By the equivalence of (1) and (2) we see that $\{ x_ i\} $ is a maximal $p$-independent subset of $K$ over $k$. Hence by the claim above it is a $p$-basis. $\square$

Lemma 15.45.3. Let $k \subset K$ be a field extension. Let $\{ K_\alpha \} _{\alpha \in A}$ be a collection of subfields of $K$ with the following properties

  1. $k \subset K_\alpha $ for all $\alpha \in A$,

  2. $k = \bigcap _{\alpha \in A} K_\alpha $,

  3. for $\alpha , \alpha ' \in A$ there exists an $\alpha '' \in A$ such that $K_{\alpha ''} \subset K_\alpha \cap K_{\alpha '}$.

Then for $n \geq 1$ and $V \subset K^{\oplus n}$ a $K$-vector space we have $V \cap k^{\oplus n} \not= 0$ if and only if $V \cap K_\alpha ^{\oplus n} \not= 0$ for all $\alpha \in A$.

Proof. By induction on $n$. The case $n = 1$ follows from the assumptions. Assume the result proven for subspaces of $K^{\oplus n - 1}$. Assume that $V \subset K^{\oplus n}$ has nonzero intersection with $K_\alpha ^{\oplus n}$ for all $\alpha \in A$. If $V \cap 0 \oplus k^{\oplus n - 1}$ is nonzero then we win. Hence we may assume this is not the case. By induction hypothesis we can find an $\alpha $ such that $V \cap 0 \oplus K_\alpha ^{\oplus n - 1}$ is zero. Let $v = (x_1, \ldots , x_ n) \in V \cap K_\alpha $ be a nonzero element. By our choice of $\alpha $ we see that $x_1$ is not zero. Replace $v$ by $x_1^{-1}v$ so that $v = (1, x_2, \ldots , x_ n)$. Note that if $v' = (x_1', \ldots , x'_ n) \in V \cap K_\alpha $, then $v' - x_1'v = 0$ by our choice of $\alpha $. Hence we see that $V \cap K_\alpha ^{\oplus n} = K_\alpha v$. If we choose some $\alpha '$ such that $K_{\alpha '} \subset K_\alpha $, then we see that necessarily $v \in V \cap K_{\alpha '}^{\oplus n}$ (by the same arguments applied to $\alpha '$). Hence

\[ x_2, \ldots , x_ n \in \bigcap \nolimits _{\alpha ' \in A, K_{\alpha '} \subset K_\alpha } K_{\alpha '} \]

which equals $k$ by (2) and (3). $\square$

Lemma 15.45.4. Let $K$ be a field of characteristic $p$. Let $\{ K_\alpha \} _{\alpha \in A}$ be a collection of subfields of $K$ with the following properties

  1. $K^ p \subset K_\alpha $ for all $\alpha \in A$,

  2. $K^ p = \bigcap _{\alpha \in A} K_\alpha $,

  3. for $\alpha , \alpha ' \in A$ there exists an $\alpha '' \in A$ such that $K_{\alpha ''} \subset K_\alpha \cap K_{\alpha '}$.

Then

  1. the intersection of the kernels of the maps $\Omega _{K/\mathbf{F}_ p} \to \Omega _{K/K_\alpha }$ is zero,

  2. for any finite extension $K \subset L$ we have $L^ p = \bigcap _{\alpha \in A} L^ pK_\alpha $.

Proof. Proof of (1). Choose a $p$-basis $\{ x_ i\} $ for $K$ over $\mathbf{F}_ p$. Suppose that $\eta = \sum _{i \in I'} y_ i \text{d}x_ i$ maps to zero in $\Omega _{K/K_\alpha }$ for every $\alpha \in A$. Here the index set $I'$ is finite. By Lemma 15.45.2 this means that for every $\alpha $ there exists a relation

\[ \sum \nolimits _ E a_{E, \alpha } x^ E,\quad a_{E, \alpha } \in K_\alpha \]

where $E$ runs over multi-indices $E = (e_ i)_{i \in I'}$ with $0 \leq e_ i < p$. On the other hand, Lemma 15.45.2 guarantees there is no such relation $\sum a_ E x^ E = 0$ with $a_ E \in K^ p$. This is a contradiction by Lemma 15.45.3.

Proof of (2). Suppose that we have a tower $K \subset M \subset L$ of finite extensions of fields. Set $M_\alpha = M^ p K_\alpha $ and $L_\alpha = L^ p K_\alpha = L^ p M_\alpha $. Then we can first prove that $M^ p = \bigcap _{\alpha \in A} M_\alpha $, and after that prove that $L^ p = \bigcap _{\alpha \in A} L_\alpha $. Hence it suffices to prove (2) for primitive field extensions having no nontrivial subfields. First, assume that $L = K(\theta )$ is separable over $K$. Then $L$ is generated by $\theta ^ p$ over $K$, hence we may assume that $\theta \in L^ p$. In this case we see that

\[ L^ p = K^ p \oplus K^ p\theta \oplus \ldots K^ p\theta ^{d - 1} \quad \text{and}\quad L^ pK_\alpha = K_\alpha \oplus K_\alpha \theta \oplus \ldots K_\alpha \theta ^{d - 1} \]

where $d = [L : K]$. Thus the conclusion is clear in this case. The other case is where $L = K(\theta )$ with $\theta ^ p = t \in K$, $t \not\in K^ p$. In this case we have

\[ L^ p = K^ p \oplus K^ pt \oplus \ldots K^ pt^{p - 1} \quad \text{and}\quad L^ pK_\alpha = K_\alpha \oplus K_\alpha t \oplus \ldots K_\alpha t^{p - 1} \]

Again the result is clear. $\square$

Lemma 15.45.5. Let $k$ be a field of characteristic $p > 0$. Let $n, m \geq 0$. Let $K$ be the fraction field of $k[[x_1, \ldots , x_ d]][y_1, \ldots , y_ m]$. As $k'$ ranges through all subfields $k^ p \subset k' \subset k$ with $[k : k'] < \infty $ the subfields

\[ \text{fraction field of } k'[[x_1^ p, \ldots , x_ n^ p]][y_1^ p, \ldots , y_ m^ p] \subset K \]

form a family of subfields as in Lemma 15.45.4. Moreover, each of the ring extensions $k'[[x_1^ p, \ldots , x_ n^ p]][y_1^ p, \ldots , y_ m^ p] \subset k[[x_1, \ldots , x_ n]][y_1, \ldots , y_ m]$ is finite.

Proof. Write $A = k[[x_1, \ldots , x_ n]][y_1, \ldots , y_ m]$ and $A' = k'[[x_1^ p, \ldots , x_ n^ p]][y_1^ p, \ldots , y_ m^ p]$. We also denote $K'$ the fraction field of $A'$. The ring extension $k'[[x_1^ p, \ldots , x_ d^ p]] \subset k[[x_1, \ldots , x_ d]]$ is finite by Algebra, Lemma 10.96.7 which implies that $A \to A'$ is finite. For $f \in A$ we see that $f^ p \in A'$. Hence $K^ p \subset K'$. Any element of $K'$ can be written as $a/b^ p$ with $a \in A'$ and $b \in A$ nonzero. Suppose that $f/g^ p \in K$, $f, g \in A$, $g \not= 0$ is contained in $K'$ for every choice of $k'$. Fix a choice of $k'$ for the moment. By the above we see $f/g^ p = a/b^ p$ for some $a \in A'$ and some nonzero $b \in A$. Hence $b^ p f \in A'$. For any $A'$-derivation $D : A \to A$ we see that $0 = D(b^ pf) = b^ p D(f)$ hence $D(f) = 0$ as $A$ is a domain. Taking $D = \partial _{x_ i}$ and $D = \partial _{y_ j}$ we conclude that $f \in k[[x_1^ p, \ldots , x_ n^ p]][y_1^ p, \ldots , y_ d^ p]$. Applying a $k'$-derivation $\theta : k \to k$ we similarly conclude that all coefficients of $f$ are in $k'$, i.e., $f \in A'$. Since it is clear that $A = \bigcap \nolimits _{k'} A'$ where $k'$ ranges over all subfields as in the lemma we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07P0. Beware of the difference between the letter 'O' and the digit '0'.