Lemma 30.6.1. Let $f : X \to S$ be a quasi-compact and quasi-separated morphism of schemes. Let $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ be a filtered colimit of quasi-coherent sheaves on $X$. Then for any $p \geq 0$ we have

$R^ pf_*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits R^ pf_*\mathcal{F}_ i.$

Proof. Recall that $R^ pf_*\mathcal{F}$ is the sheaf associated to $U \mapsto H^ p(f^{-1}U, \mathcal{F})$, see Cohomology, Lemma 20.7.3. Recall that the colimit is the sheaf associated to the presheaf colimit (taking colimits over opens). Hence we can apply Cohomology, Lemma 20.19.1 to $H^ p(f^{-1}U, -)$ where $U$ is affine to conclude. (Because the basis of affine opens in $f^{-1}U$ satisfies the assumptions of that lemma.) $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07TB. Beware of the difference between the letter 'O' and the digit '0'.