Lemma 69.12.5. Let $S$ be a scheme. Let $X$ be a locally Noetherian algebraic space over $S$,. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_ X$-modules. The $\mathcal{O}_ X$-modules $\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G}$ and $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})$ are coherent.
Proof. Via Lemma 69.12.2 this follows from the result for schemes, see Cohomology of Schemes, Lemma 30.9.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)