Lemma 69.13.1. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. The ascending chain condition holds for quasi-coherent submodules of $\mathcal{F}$. In other words, given any sequence

$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{F}$

of quasi-coherent submodules, then $\mathcal{F}_ n = \mathcal{F}_{n + 1} = \ldots$ for some $n \geq 0$.

Proof. Choose an affine scheme $U$ and a surjective étale morphism $U \to X$ (see Properties of Spaces, Lemma 66.6.3). Then $U$ is a Noetherian scheme (by Morphisms of Spaces, Lemma 67.23.5). If $\mathcal{F}_ n|_ U = \mathcal{F}_{n + 1}|_ U = \ldots$ then $\mathcal{F}_ n = \mathcal{F}_{n + 1} = \ldots$. Hence the result follows from the case of schemes, see Cohomology of Schemes, Lemma 30.10.1. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).