Lemma 69.13.2. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{F}$ be a coherent sheaf on $X$. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals corresponding to a closed subspace $Z \subset X$. Then there is some $n \geq 0$ such that $\mathcal{I}^ n\mathcal{F} = 0$ if and only if $\text{Supp}(\mathcal{F}) \subset Z$ (set theoretically).

**Proof.**
Choose an affine scheme $U$ and a surjective étale morphism $U \to X$ (see Properties of Spaces, Lemma 66.6.3). Then $U$ is a Noetherian scheme (by Morphisms of Spaces, Lemma 67.23.5). Note that $\mathcal{I}^ n\mathcal{F}|_ U = 0$ if and only if $\mathcal{I}^ n\mathcal{F} = 0$ and similarly for the condition on the support. Hence the result follows from the case of schemes, see Cohomology of Schemes, Lemma 30.10.2.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)