Lemma 69.13.4. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. Let \mathcal{G} be a coherent \mathcal{O}_ X-module. Let \mathcal{I} \subset \mathcal{O}_ X be a quasi-coherent sheaf of ideals. Denote Z \subset X the corresponding closed subspace and set U = X \setminus Z. There is a canonical isomorphism
\mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}^ n\mathcal{G}, \mathcal{F}) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{G}|_ U, \mathcal{F}|_ U).
In particular we have an isomorphism
\mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}^ n, \mathcal{F}) \longrightarrow \Gamma (U, \mathcal{F}).
Proof.
Let W be an affine scheme and let W \to X be a surjective étale morphism (see Properties of Spaces, Lemma 66.6.3). Set R = W \times _ X W. Then W and R are Noetherian schemes, see Morphisms of Spaces, Lemma 67.23.5. Hence the result hold for the restrictions of \mathcal{F}, \mathcal{G}, and \mathcal{I}, U, Z to W and R by Cohomology of Schemes, Lemma 30.10.5. It follows formally that the result holds over X.
\square
Comments (0)