The Stacks project

Lemma 69.13.4. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $\mathcal{G}$ be a coherent $\mathcal{O}_ X$-module. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals. Denote $Z \subset X$ the corresponding closed subspace and set $U = X \setminus Z$. There is a canonical isomorphism

\[ \mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}^ n\mathcal{G}, \mathcal{F}) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{G}|_ U, \mathcal{F}|_ U). \]

In particular we have an isomorphism

\[ \mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}^ n, \mathcal{F}) \longrightarrow \Gamma (U, \mathcal{F}). \]

Proof. Let $W$ be an affine scheme and let $W \to X$ be a surjective étale morphism (see Properties of Spaces, Lemma 66.6.3). Set $R = W \times _ X W$. Then $W$ and $R$ are Noetherian schemes, see Morphisms of Spaces, Lemma 67.23.5. Hence the result hold for the restrictions of $\mathcal{F}$, $\mathcal{G}$, and $\mathcal{I}$, $U$, $Z$ to $W$ and $R$ by Cohomology of Schemes, Lemma 30.10.5. It follows formally that the result holds over $X$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07UM. Beware of the difference between the letter 'O' and the digit '0'.