Lemma 30.10.5. Let X be a Noetherian scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. Let \mathcal{G} be a coherent \mathcal{O}_ X-module. Let \mathcal{I} \subset \mathcal{O}_ X be a quasi-coherent sheaf of ideals. Denote Z \subset X the corresponding closed subscheme and set U = X \setminus Z. There is a canonical isomorphism
\mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}^ n\mathcal{G}, \mathcal{F}) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{G}|_ U, \mathcal{F}|_ U).
In particular we have an isomorphism
\mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}( \mathcal{I}^ n, \mathcal{F}) \longrightarrow \Gamma (U, \mathcal{F}).
Proof.
We first prove the second map is an isomorphism. It is injective by Properties, Lemma 28.25.3. Since \mathcal{F} is the union of its coherent submodules, see Properties, Lemma 28.22.3 (and Lemma 30.9.1) we may and do assume that \mathcal{F} is coherent to prove surjectivity. Let \mathcal{F}_ n denote the quasi-coherent subsheaf of \mathcal{F} consisting of sections annihilated by \mathcal{I}^ n, see Properties, Lemma 28.25.3. Since \mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots we see that \mathcal{F}_ n = \mathcal{F}_{n + 1} = \ldots for some n \geq 0 by Lemma 30.10.1. Set \mathcal{H} = \mathcal{F}_ n for this n. By Artin-Rees (Lemma 30.10.3) there exists an c \geq 0 such that \mathcal{I}^ m\mathcal{F} \cap \mathcal{H} \subset \mathcal{I}^{m - c}\mathcal{H}. Picking m = n + c we get \mathcal{I}^ m\mathcal{F} \cap \mathcal{H} \subset \mathcal{I}^ n\mathcal{H} = 0. Thus if we set \mathcal{F}' = \mathcal{I}^ m\mathcal{F} then we see that \mathcal{F}' \cap \mathcal{F}_ n = 0 and \mathcal{F}'|_ U = \mathcal{F}|_ U. Note in particular that the subsheaf (\mathcal{F}')_ N of sections annihilated by \mathcal{I}^ N is zero for all N \geq 0. Hence by Properties, Lemma 28.25.3 we deduce that the top horizontal arrow in the following commutative diagram is a bijection:
\xymatrix{ \mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}( \mathcal{I}^ n, \mathcal{F}') \ar[r] \ar[d] & \Gamma (U, \mathcal{F}') \ar[d] \\ \mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}( \mathcal{I}^ n, \mathcal{F}) \ar[r] & \Gamma (U, \mathcal{F}) }
Since also the right vertical arrow is a bijection we conclude that the bottom horizontal arrow is surjective as desired.
Next, we prove the first arrow of the lemma is a bijection. By Lemma 30.9.1 the sheaf \mathcal{G} is of finite presentation and hence the sheaf \mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathcal{F}) is quasi-coherent, see Schemes, Section 26.24. By definition we have
\mathcal{H}(U) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{G}|_ U, \mathcal{F}|_ U)
Pick a \psi in the right hand side of the first arrow of the lemma, i.e., \psi \in \mathcal{H}(U). The result just proved applies to \mathcal{H} and hence there exists an n \geq 0 and an \varphi : \mathcal{I}^ n \to \mathcal{H} which recovers \psi on restriction to U. By Modules, Lemma 17.22.1 \varphi corresponds to a map
\varphi : \mathcal{I}^ n \otimes _{\mathcal{O}_ X} \mathcal{G} \longrightarrow \mathcal{F}.
This is almost what we want except that the source of the arrow is the tensor product of \mathcal{I}^ n and \mathcal{G} and not the product. We will show that, at the cost of increasing n, the difference is irrelevant. Consider the short exact sequence
0 \to \mathcal{K} \to \mathcal{I}^ n \otimes _{\mathcal{O}_ X} \mathcal{G} \to \mathcal{I}^ n\mathcal{G} \to 0
where \mathcal{K} is defined as the kernel. Note that \mathcal{I}^ n\mathcal{K} = 0 (proof omitted). By Artin-Rees again we see that
\mathcal{K} \cap \mathcal{I}^ m(\mathcal{I}^ n \otimes _{\mathcal{O}_ X} \mathcal{G}) = 0
for some m large enough. In other words we see that
\mathcal{I}^ m(\mathcal{I}^ n \otimes _{\mathcal{O}_ X} \mathcal{G}) \longrightarrow \mathcal{I}^{n + m}\mathcal{G}
is an isomorphism. Let \varphi ' be the restriction of \varphi to this submodule thought of as a map \mathcal{I}^{m + n}\mathcal{G} \to \mathcal{F}. Then \varphi ' gives an element of the left hand side of the first arrow of the lemma which maps to \psi via the arrow. In other words we have proved surjectivity of the arrow. We omit the proof of injectivity.
\square
Comments (3)
Comment #947 by correction_bot on
Comment #6793 by Yuto Masamura on
Comment #6940 by Johan on