Lemma 30.10.3 (Artin-Rees). Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a coherent sheaf on $X$. Let $\mathcal{G} \subset \mathcal{F}$ be a quasi-coherent subsheaf. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals. Then there exists a $c \geq 0$ such that for all $n \geq c$ we have
\[ \mathcal{I}^{n - c}(\mathcal{I}^ c\mathcal{F} \cap \mathcal{G}) = \mathcal{I}^ n\mathcal{F} \cap \mathcal{G} \]
Proof. This follows immediately from Algebra, Lemma 10.51.2 because $X$ has a finite covering by spectra of Noetherian rings. $\square$
Comments (1)
Comment #943 by correction_bot on