The Stacks project

30.10 Coherent sheaves on Noetherian schemes

In this section we mention some properties of coherent sheaves on Noetherian schemes.

Lemma 30.10.1. Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. The ascending chain condition holds for quasi-coherent submodules of $\mathcal{F}$. In other words, given any sequence

\[ \mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{F} \]

of quasi-coherent submodules, then $\mathcal{F}_ n = \mathcal{F}_{n + 1} = \ldots $ for some $n \geq 0$.

Proof. Choose a finite affine open covering. On each member of the covering we get stabilization by Algebra, Lemma 10.51.1. Hence the lemma follows. $\square$

Lemma 30.10.2. Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a coherent sheaf on $X$. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals corresponding to a closed subscheme $Z \subset X$. Then there is some $n \geq 0$ such that $\mathcal{I}^ n\mathcal{F} = 0$ if and only if $\text{Supp}(\mathcal{F}) \subset Z$ (set theoretically).

Proof. This follows immediately from Algebra, Lemma 10.62.4 because $X$ has a finite covering by spectra of Noetherian rings. $\square$

Lemma 30.10.3 (Artin-Rees). Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a coherent sheaf on $X$. Let $\mathcal{G} \subset \mathcal{F}$ be a quasi-coherent subsheaf. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals. Then there exists a $c \geq 0$ such that for all $n \geq c$ we have

\[ \mathcal{I}^{n - c}(\mathcal{I}^ c\mathcal{F} \cap \mathcal{G}) = \mathcal{I}^ n\mathcal{F} \cap \mathcal{G} \]

Proof. This follows immediately from Algebra, Lemma 10.51.2 because $X$ has a finite covering by spectra of Noetherian rings. $\square$

Lemma 30.10.4. Let $X$ be a Noetherian scheme. Every quasi-coherent $\mathcal{O}_ X$-module is the filtered colimit of its coherent submodules.

Proof. This is a reformulation of Properties, Lemma 28.22.3 in view of the fact that a finite type quasi-coherent $\mathcal{O}_ X$-module is coherent by Lemma 30.9.1. $\square$

Lemma 30.10.5. Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $\mathcal{G}$ be a coherent $\mathcal{O}_ X$-module. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals. Denote $Z \subset X$ the corresponding closed subscheme and set $U = X \setminus Z$. There is a canonical isomorphism

\[ \mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}^ n\mathcal{G}, \mathcal{F}) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{G}|_ U, \mathcal{F}|_ U). \]

In particular we have an isomorphism

\[ \mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}( \mathcal{I}^ n, \mathcal{F}) \longrightarrow \Gamma (U, \mathcal{F}). \]

Proof. We first prove the second map is an isomorphism. It is injective by Properties, Lemma 28.25.3. Since $\mathcal{F}$ is the union of its coherent submodules, see Properties, Lemma 28.22.3 (and Lemma 30.9.1) we may and do assume that $\mathcal{F}$ is coherent to prove surjectivity. Let $\mathcal{F}_ n$ denote the quasi-coherent subsheaf of $\mathcal{F}$ consisting of sections annihilated by $\mathcal{I}^ n$, see Properties, Lemma 28.25.3. Since $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots $ we see that $\mathcal{F}_ n = \mathcal{F}_{n + 1} = \ldots $ for some $n \geq 0$ by Lemma 30.10.1. Set $\mathcal{H} = \mathcal{F}_ n$ for this $n$. By Artin-Rees (Lemma 30.10.3) there exists an $c \geq 0$ such that $\mathcal{I}^ m\mathcal{F} \cap \mathcal{H} \subset \mathcal{I}^{m - c}\mathcal{H}$. Picking $m = n + c$ we get $\mathcal{I}^ m\mathcal{F} \cap \mathcal{H} \subset \mathcal{I}^ n\mathcal{H} = 0$. Thus if we set $\mathcal{F}' = \mathcal{I}^ m\mathcal{F}$ then we see that $\mathcal{F}' \cap \mathcal{F}_ n = 0$ and $\mathcal{F}'|_ U = \mathcal{F}|_ U$. Note in particular that the subsheaf $(\mathcal{F}')_ N$ of sections annihilated by $\mathcal{I}^ N$ is zero for all $N \geq 0$. Hence by Properties, Lemma 28.25.3 we deduce that the top horizontal arrow in the following commutative diagram is a bijection:

\[ \xymatrix{ \mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}( \mathcal{I}^ n, \mathcal{F}') \ar[r] \ar[d] & \Gamma (U, \mathcal{F}') \ar[d] \\ \mathop{\mathrm{colim}}\nolimits _ n \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}( \mathcal{I}^ n, \mathcal{F}) \ar[r] & \Gamma (U, \mathcal{F}) } \]

Since also the right vertical arrow is a bijection we conclude that the bottom horizontal arrow is surjective as desired.

Next, we prove the first arrow of the lemma is a bijection. By Lemma 30.9.1 the sheaf $\mathcal{G}$ is of finite presentation and hence the sheaf $\mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathcal{F})$ is quasi-coherent, see Schemes, Section 26.24. By definition we have

\[ \mathcal{H}(U) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{G}|_ U, \mathcal{F}|_ U) \]

Pick a $\psi $ in the right hand side of the first arrow of the lemma, i.e., $\psi \in \mathcal{H}(U)$. The result just proved applies to $\mathcal{H}$ and hence there exists an $n \geq 0$ and an $\varphi : \mathcal{I}^ n \to \mathcal{H}$ which recovers $\psi $ on restriction to $U$. By Modules, Lemma 17.22.1 $\varphi $ corresponds to a map

\[ \varphi : \mathcal{I}^ n \otimes _{\mathcal{O}_ X} \mathcal{G} \longrightarrow \mathcal{F}. \]

This is almost what we want except that the source of the arrow is the tensor product of $\mathcal{I}^ n$ and $\mathcal{G}$ and not the product. We will show that, at the cost of increasing $n$, the difference is irrelevant. Consider the short exact sequence

\[ 0 \to \mathcal{K} \to \mathcal{I}^ n \otimes _{\mathcal{O}_ X} \mathcal{G} \to \mathcal{I}^ n\mathcal{G} \to 0 \]

where $\mathcal{K}$ is defined as the kernel. Note that $\mathcal{I}^ n\mathcal{K} = 0$ (proof omitted). By Artin-Rees again we see that

\[ \mathcal{K} \cap \mathcal{I}^ m(\mathcal{I}^ n \otimes _{\mathcal{O}_ X} \mathcal{G}) = 0 \]

for some $m$ large enough. In other words we see that

\[ \mathcal{I}^ m(\mathcal{I}^ n \otimes _{\mathcal{O}_ X} \mathcal{G}) \longrightarrow \mathcal{I}^{n + m}\mathcal{G} \]

is an isomorphism. Let $\varphi '$ be the restriction of $\varphi $ to this submodule thought of as a map $\mathcal{I}^{m + n}\mathcal{G} \to \mathcal{F}$. Then $\varphi '$ gives an element of the left hand side of the first arrow of the lemma which maps to $\psi $ via the arrow. In other words we have proved surjectivity of the arrow. We omit the proof of injectivity. $\square$

Lemma 30.10.6. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_ X$-modules. Let $U \subset X$ be open and let $\varphi : \mathcal{F}|_ U \to \mathcal{G}|_ U$ be an $\mathcal{O}_ U$-module map. Then there exists a coherent submodule $\mathcal{F}' \subset \mathcal{F}$ agreeing with $\mathcal{F}$ over $U$ such that $\varphi $ extends to $\varphi ' : \mathcal{F}' \to \mathcal{G}$.

Proof. Let $\mathcal{I} \subset \mathcal{O}_ X$ be the coherent sheaf of ideals cutting out the reduced induced scheme structure on $X \setminus U$. If $X$ is Noetherian, then Lemma 30.10.5 tells us that we can take $\mathcal{F}' = \mathcal{I}^ n\mathcal{F}$ for some $n$. The general case will follow from this using Zorn's lemma.

Consider the set of triples $(U', \mathcal{F}', \varphi ')$ where $U \subset U' \subset X$ is open, $\mathcal{F}' \subset \mathcal{F}|_{U'}$ is a coherent subsheaf agreeing with $\mathcal{F}$ over $U$, and $\varphi ' : \mathcal{F}' \to \mathcal{G}|_{U'}$ restricts to $\varphi $ over $U$. We say $(U'', \mathcal{F}'', \varphi '') \geq (U', \mathcal{F}', \varphi ')$ if and only if $U'' \supset U'$, $\mathcal{F}''|_{U'} = \mathcal{F}'$, and $\varphi ''|_{U'} = \varphi '$. It is clear that if we have a totally ordered collection of triples $(U_ i, \mathcal{F}_ i, \varphi _ i)$, then we can glue the $\mathcal{F}_ i$ to a subsheaf $\mathcal{F}'$ of $\mathcal{F}$ over $U' = \bigcup U_ i$ and extend $\varphi $ to a map $\varphi ' : \mathcal{F}' \to \mathcal{G}|_{U'}$. Hence any totally ordered subset of triples has an upper bound. Finally, suppose that $(U', \mathcal{F}', \varphi ')$ is any triple but $U' \not= X$. Then we can choose an affine open $W \subset X$ which is not contained in $U'$. By the result of the first paragraph we can extend the subsheaf $\mathcal{F}'|_{W \cap U'}$ and the restriction $\varphi '|_{W \cap U'}$ to some subsheaf $\mathcal{F}'' \subset \mathcal{F}|_ W$ and map $\varphi '' : \mathcal{F}'' \to \mathcal{G}|_ W$. Of course the agreement between $(\mathcal{F}', \varphi ')$ and $(\mathcal{F}'', \varphi '')$ over $W \cap U'$ exactly means that we can extend this to a triple $(U' \cup W, \mathcal{F}''', \varphi ''')$. Hence any maximal triple $(U', \mathcal{F}', \varphi ')$ (which exist by Zorn's lemma) must have $U' = X$ and the proof is complete. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01Y7. Beware of the difference between the letter 'O' and the digit '0'.