Lemma 69.16.3. In Situation 69.16.1.
Given an affine morphism $X' \to X$ of algebraic spaces, we have $H^1(X', \mathcal{F}') = 0$ for every quasi-coherent $\mathcal{O}_{X'}$-module $\mathcal{F}'$.
Given an $A$-algebra $A'$ setting $X' = X \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A')$ the morphism $X' \to X$ is affine and $\Gamma (X', \mathcal{O}_{X'}) = A'$.
Comments (0)