Processing math: 100%

The Stacks project

Lemma 21.14.5 (Leray spectral sequence). Let f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) be a morphism of ringed topoi. Let \mathcal{F}^\bullet be a bounded below complex of \mathcal{O}_\mathcal {C}-modules. There is a spectral sequence

E_2^{p, q} = H^ p(\mathcal{D}, R^ qf_*(\mathcal{F}^\bullet ))

converging to H^{p + q}(\mathcal{C}, \mathcal{F}^\bullet ).

Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma 13.22.2 coming from the composition of functors \Gamma (\mathcal{C}, -) = \Gamma (\mathcal{D}, -) \circ f_*. To see that the assumptions of Derived Categories, Lemma 13.22.2 are satisfied, see Lemmas 21.14.1 and 21.14.3. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.