The Stacks project

Lemma 21.14.6. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $\mathcal{F}$ be an $\mathcal{O}_\mathcal {C}$-module.

  1. If $R^ qf_*\mathcal{F} = 0$ for $q > 0$, then $H^ p(\mathcal{C}, \mathcal{F}) = H^ p(\mathcal{D}, f_*\mathcal{F})$ for all $p$.

  2. If $H^ p(\mathcal{D}, R^ qf_*\mathcal{F}) = 0$ for all $q$ and $p > 0$, then $H^ q(\mathcal{C}, \mathcal{F}) = H^0(\mathcal{D}, R^ qf_*\mathcal{F})$ for all $q$.

Proof. These are two simple conditions that force the Leray spectral sequence to converge. You can also prove these facts directly (without using the spectral sequence) which is a good exercise in cohomology of sheaves. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0733. Beware of the difference between the letter 'O' and the digit '0'.