Lemma 21.14.7 (Relative Leray spectral sequence). Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ and $g : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{E}), \mathcal{O}_\mathcal {E})$ be morphisms of ringed topoi. Let $\mathcal{F}$ be an $\mathcal{O}_\mathcal {C}$-module. There is a spectral sequence with

converging to $R^{p + q}(g \circ f)_*\mathcal{F}$. This spectral sequence is functorial in $\mathcal{F}$, and there is a version for bounded below complexes of $\mathcal{O}_\mathcal {C}$-modules.

## Comments (0)