Proof. By Decent Spaces, Lemma 67.9.2 we can find a scheme $Y$ and a surjective integral morphism $Y \to X$. Since an integral morphism is affine, we can apply Lemma 68.16.3 to see that $H^1(Y, \mathcal{G}) = 0$ for every quasi-coherent $\mathcal{O}_ Y$-module $\mathcal{G}$. Since $Y \to X$ is quasi-compact and $X$ is quasi-compact, we see that $Y$ is quasi-compact. Since $Y$ is a scheme, we may apply Cohomology of Schemes, Lemma 30.3.1 to see that $Y$ is affine. Hence $Y$ is separated. Note that an integral morphism is affine and universally closed, see Morphisms of Spaces, Lemma 66.45.7. By Morphisms of Spaces, Lemma 66.9.8 we see that $X$ is a separated algebraic space. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07V5. Beware of the difference between the letter 'O' and the digit '0'.