Lemma 15.4.2. Assumptions as in Lemma 15.4.1. Let $Q = \mathop{\mathrm{Coker}}(g)$ and $Q' = \mathop{\mathrm{Coker}}(g')$. Then $\text{Gr}_ I(Q) \cong \text{Gr}_ I(Q')$ as graded $\text{Gr}_ I(A)$-modules.
Proof. In degree $n$ we have $\text{Gr}_ I(Q)_ n = I^ nN/(I^{n + 1}N + g(M) \cap I^ nN)$ and similarly for $Q'$. We claim that
By symmetry (the proof of the claim will only use that $c$ works for $g$ which also holds for $g'$ by the lemma) this will imply that
whence $\text{Gr}_ I(Q)_ n$ and $\text{Gr}_ I(Q')_ n$ agree as subquotients of $N$, implying the lemma. Observe that the claim is clear for $n \leq c$ as $f = f' \bmod I^{c + 1}N$. If $n > c$, then suppose $b \in g(M) \cap I^ nN$. Write $b = g(a)$ for $a \in I^{n - c}M$. Set $b' = g'(a)$. We have $b - b' = (g - g')(a) \in I^{n + 1}N$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: