The Stacks project

Lemma 15.4.1. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal contained in the Jacobson radical of $A$. Let

\[ S : L \xrightarrow {f} M \xrightarrow {g} N \quad \text{and}\quad S' : L \xrightarrow {f'} M \xrightarrow {g'} N \]

be two complexes of finite $A$-modules as shown. Assume that

  1. $c$ works in the Artin-Rees lemma for $f$ and $g$,

  2. the complex $S$ is exact, and

  3. $f' = f \bmod I^{c + 1}M$ and $g' = g \bmod I^{c + 1}N$.

Then $c$ works in the Artin-Rees lemma for $g'$ and the complex $S'$ is exact.

Proof. We first show that $g'(M) \cap I^ nN \subset g'(I^{n - c}M)$ for $n \geq c$. Let $a$ be an element of $M$ such that $g'(a) \in I^ nN$. We want to adjust $a$ by an element of $f'(L)$, i.e, without changing $g'(a)$, so that $a \in I^{n-c}M$. Assume that $a \in I^ rM$, where $r < n - c$. Then

\[ g(a) = g'(a) + (g - g')(a) \in I^ n N + I^{r + c + 1}N = I^{r + c + 1}N. \]

By Artin-Rees for $g$ we have $g(a) \in g(I^{r + 1}M)$. Say $g(a) = g(a_1)$ with $a_1 \in I^{r + 1}M$. Since the sequence $S$ is exact, $a - a_1 \in f(L)$. Accordingly, we write $a = f(b) + a_1$ for some $b \in L$. Then $f(b) = a - a_1 \in I^ rM$. Artin-Rees for $f$ shows that if $r \geq c$, we may replace $b$ by an element of $I^{r - c}L$. Then in all cases, $a = f'(b) + a_2$, where $a_2 = (f - f')(b) + a_1 \in I^{r + 1}M$. (Namely, either $c \geq r$ and $(f - f')(b) \in I^{r + 1}M$ by assumption, or $c < r$ and $b \in I^{r - c}$, whence again $(f - f')(b) \in I^{c + 1} I^{r - c} M = I^{r + 1}M$.) So we can adjust $a$ by the element $f'(b) \in f'(L)$ to increase $r$ by $1$.

In fact, the argument above shows that $(g')^{-1}(I^ nN) \subset f'(L) + I^{n - c}M$ for all $n \geq c$. Hence $S'$ is exact because

\[ (g')^{-1}(0) = (g')^{-1}(\bigcap I^ nN) \subset \bigcap f'(L) + I^{n - c}M = f'(L) \]

as $I$ is contained in the Jacobson radical of $A$, see Algebra, Lemma 10.51.5. $\square$


Comments (2)

Comment #5047 by Laurent Moret-Bailly on

In the first sentenceo f the proof, replace , by , respectively. On line , the first should be .


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07VE. Beware of the difference between the letter 'O' and the digit '0'.