The Stacks project

Lemma 96.8.2. Let $S$ be a locally Noetherian scheme. Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Z} \to \mathcal{Y}$ be $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Assume $\mathcal{X}$, $\mathcal{Y}$, $\mathcal{Z}$ satisfy (RS). Let $k$ be a field of finite type over $S$ and let $w_0$ be an object of $\mathcal{W} = \mathcal{X} \times _\mathcal {Y} \mathcal{Z}$ over $k$. Denote $x_0, y_0, z_0$ the objects of $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ you get from $w_0$. Then there is a $6$-term exact sequence

\[ \xymatrix{ 0 \ar[r] & \text{Inf}(\mathcal{F}_{\mathcal{W}, k, w_0}) \ar[r] & \text{Inf}(\mathcal{F}_{\mathcal{X}, k, x_0}) \oplus \text{Inf}(\mathcal{F}_{\mathcal{Z}, k, z_0}) \ar[r] & \text{Inf}(\mathcal{F}_{\mathcal{Y}, k, y_0}) \ar[lld] \\ & T\mathcal{F}_{\mathcal{W}, k, w_0} \ar[r] & T\mathcal{F}_{\mathcal{X}, k, x_0} \oplus T\mathcal{F}_{\mathcal{Z}, k, z_0} \ar[r] & T\mathcal{F}_{\mathcal{Y}, k, y_0} } \]

of $k$-vector spaces.

Proof. By Lemma 96.5.3 we see that $\mathcal{W}$ satisfies (RS) and hence the lemma makes sense. To see the lemma is true, apply Lemmas 96.3.3 and 96.6.1 and Formal Deformation Theory, Lemma 88.20.1. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 96.8: Tangent spaces

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07X2. Beware of the difference between the letter 'O' and the digit '0'.