The Stacks project

Example 98.13.2. Let $k$ be a field and set $\Lambda = k[s, t]$. Consider the functor $F : \Lambda \text{-algebras} \longrightarrow \textit{Sets}$ defined by the rule

\[ F(A) = \left\{ \begin{matrix} * & \text{if there exist }f_1, \ldots , f_ n \in A\text{ such that } \\ & A = (s, t, f_1, \ldots , f_ n)\text{ and } f_ i s = 0\ \forall i \\ \emptyset & \text{else} \end{matrix} \right. \]

Geometrically $F(A) = *$ means there exists a quasi-compact open neighbourhood $W$ of $V(s, t) \subset \mathop{\mathrm{Spec}}(A)$ such that $s|_ W = 0$. Let $\mathcal{X} \subset (\mathit{Sch}/\mathop{\mathrm{Spec}}(\Lambda ))_{fppf}$ be the full subcategory consisting of schemes $T$ which have an affine open covering $T = \bigcup \mathop{\mathrm{Spec}}(A_ j)$ with $F(A_ j) = *$ for all $j$. Then $\mathcal{X}$ satisfies [0], [1], [2], [3], and [4] but not [5]. Namely, over $U = \mathop{\mathrm{Spec}}(k[s, t]/(s))$ there exists an object $x$ which is versal at $u_0 = (s, t)$ but not at any other point. Details omitted.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07XR. Beware of the difference between the letter 'O' and the digit '0'.