Lemma 97.13.3. Let $S$ be a locally Noetherian scheme. Let $\mathcal{X}$ be a category fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $U$ be a scheme locally of finite type over $S$. Let $x$ be an object of $\mathcal{X}$ over $U$. Assume that $x$ is versal at every finite type point of $U$ and that $\mathcal{X}$ satisfies (RS). Then $x : (\mathit{Sch}/U)_{fppf} \to \mathcal{X}$ satisfies (97.13.2.1).

**Proof.**
Let $\mathop{\mathrm{Spec}}(l) \to U$ be a morphism with $l$ of finite type over $S$. Then the image $u_0 \in U$ is a finite type point of $U$ and $l/\kappa (u_0)$ is a finite extension, see discussion in Morphisms, Section 29.16. Hence we see that $\mathcal{F}_{(\mathit{Sch}/U)_{fppf}, l, u_{l, 0}} \to \mathcal{F}_{\mathcal{X}, l, x_{l, 0}}$ is smooth by Lemma 97.12.5.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)