Lemma 98.13.3. Let S be a locally Noetherian scheme. Let \mathcal{X} be a category fibred in groupoids over (\mathit{Sch}/S)_{fppf}. Let U be a scheme locally of finite type over S. Let x be an object of \mathcal{X} over U. Assume that x is versal at every finite type point of U and that \mathcal{X} satisfies (RS). Then x : (\mathit{Sch}/U)_{fppf} \to \mathcal{X} satisfies (98.13.2.1).
Proof. Let \mathop{\mathrm{Spec}}(l) \to U be a morphism with l of finite type over S. Then the image u_0 \in U is a finite type point of U and l/\kappa (u_0) is a finite extension, see discussion in Morphisms, Section 29.16. Hence we see that \mathcal{F}_{(\mathit{Sch}/U)_{fppf}, l, u_{l, 0}} \to \mathcal{F}_{\mathcal{X}, l, x_{l, 0}} is smooth by Lemma 98.12.5. \square
Comments (0)