Remark 98.21.9 (Canonical automorphism). Let S be a locally Noetherian scheme. Let \mathcal{X} be a category fibred in groupoids over (\mathit{Sch}/S)_{fppf}. Assume \mathcal{X} satisfies condition (RS*). Let A be an S-algebra such that \mathop{\mathrm{Spec}}(A) \to S maps into an affine open and let x, y be objects of \mathcal{X} over \mathop{\mathrm{Spec}}(A). Further, let A \to B be a ring map and let \alpha : x|_{\mathop{\mathrm{Spec}}(B)} \to y|_{\mathop{\mathrm{Spec}}(B)} be a morphism of \mathcal{X} over \mathop{\mathrm{Spec}}(B). Consider the ring map
Pulling back \alpha along the corresponding morphism \mathop{\mathrm{Spec}}(B[\Omega _{B/A}]) \to \mathop{\mathrm{Spec}}(B) we obtain a morphism \alpha _{can} between the pullbacks of x and y over B[\Omega _{B/A}]. On the other hand, we can pullback \alpha by the morphism \mathop{\mathrm{Spec}}(B[\Omega _{B/A}]) \to \mathop{\mathrm{Spec}}(B) corresponding to the injection of B into the first summand of B[\Omega _{B/A}]. By the discussion of Remark 98.21.4 we can take the difference
We will call this the canonical automorphism. It depends on all the ingredients A, x, y, A \to B and \alpha .
Comments (0)