The Stacks project

Lemma 97.23.2. Let $\Lambda \to A \to k$ be finite type ring maps of Noetherian rings with $k = \kappa (\mathfrak p)$ for some prime $\mathfrak p$ of $A$. Let $\xi : E \to \mathop{N\! L}\nolimits _{A/\Lambda }$ be morphism of $D^{-}(A)$ such that $H^{-1}(\xi \otimes ^{\mathbf{L}} k)$ is not surjective. Then there exists a surjection $A' \to A$ of $\Lambda $-algebras such that

  1. $I = \mathop{\mathrm{Ker}}(A' \to A)$ has square zero and is isomorphic to $k$ as an $A$-module,

  2. $\Omega _{A'/\Lambda } \otimes k = \Omega _{A/\Lambda } \otimes k$, and

  3. $E \to \mathop{N\! L}\nolimits _{A/A'}$ is zero.

Proof. Let $f \in A$, $f \not\in \mathfrak p$. Suppose that $A'' \to A_ f$ satisfies (a), (b), (c) for the induced map $E \otimes _ A A_ f \to \mathop{N\! L}\nolimits _{A_ f/\Lambda }$, see Algebra, Lemma 10.134.13. Then we can set $A' = A'' \times _{A_ f} A$ and get a solution. Namely, it is clear that $A' \to A$ satisfies (a) because $\mathop{\mathrm{Ker}}(A' \to A) = \mathop{\mathrm{Ker}}(A'' \to A) = I$. Pick $f'' \in A''$ lifting $f$. Then the localization of $A'$ at $(f'', f)$ is isomorphic to $A''$ (for example by More on Algebra, Lemma 15.5.3). Thus (b) and (c) are clear for $A'$ too. In this way we see that we may replace $A$ by the localization $A_ f$ (finitely many times). In particular (after such a replacement) we may assume that $\mathfrak p$ is a maximal ideal of $A$, see Morphisms, Lemma 29.16.1.

Choose a presentation $A = \Lambda [x_1, \ldots , x_ n]/J$. Then $\mathop{N\! L}\nolimits _{A/\Lambda }$ is (canonically) homotopy equivalent to

\[ J/J^2 \longrightarrow \bigoplus \nolimits _{i = 1, \ldots , n} A\text{d}x_ i, \]

see Algebra, Lemma 10.134.2. After localizing if necessary (using Nakayama's lemma) we can choose generators $f_1, \ldots , f_ m$ of $J$ such that $f_ j \otimes 1$ form a basis for $J/J^2 \otimes _ A k$. Moreover, after renumbering, we can assume that the images of $\text{d}f_1, \ldots , \text{d}f_ r$ form a basis for the image of $J/J^2 \otimes k \to \bigoplus k\text{d}x_ i$ and that $\text{d}f_{r + 1}, \ldots , \text{d}f_ m$ map to zero in $\bigoplus k\text{d}x_ i$. With these choices the space

\[ H^{-1}(\mathop{N\! L}\nolimits _{A/\Lambda } \otimes ^{\mathbf{L}}_ A k) = H^{-1}(\mathop{N\! L}\nolimits _{A/\Lambda } \otimes _ A k) \]

has basis $f_{r + 1} \otimes 1, \ldots , f_ m \otimes 1$. Changing basis once again we may assume that the image of $H^{-1}(\xi \otimes ^{\mathbf{L}} k)$ is contained in the $k$-span of $f_{r + 1} \otimes 1, \ldots , f_{m - 1} \otimes 1$. Set

\[ A' = \Lambda [x_1, \ldots , x_ n]/(f_1, \ldots , f_{m - 1}, \mathfrak pf_ m) \]

By construction $A' \to A$ satisfies (a). Since $\text{d}f_ m$ maps to zero in $\bigoplus k\text{d}x_ i$ we see that (b) holds. Finally, by construction the induced map $E \to \mathop{N\! L}\nolimits _{A/A'} = I[1]$ induces the zero map $H^{-1}(E \otimes _ A^\mathbf {L} k) \to I \otimes _ A k$. By Lemma 97.23.1 we see that the composition is zero. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07YL. Beware of the difference between the letter 'O' and the digit '0'.