Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Example 98.24.1. Let $\Lambda , S, W, \mathcal{F}$ be as in Example 98.22.3. Assume that $W \to S$ is proper and $\mathcal{F}$ coherent. By Cohomology of Schemes, Remark 30.22.2 there exists a finite complex of finite projective $\Lambda $-modules $N^\bullet $ which universally computes the cohomology of $\mathcal{F}$. In particular the obstruction spaces from Example 98.22.3 are $\mathcal{O}_ x(M) = H^1(N^\bullet \otimes _\Lambda M)$. Hence with $K^\bullet = N^\bullet \otimes _\Lambda A[-1]$ we see that $\mathcal{O}_ x(M) = H^2(K^\bullet \otimes _ A^\mathbf {L} M)$.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.