Situation 98.24.2. Let S be a locally Noetherian scheme. Let \mathcal{X} be a category fibred in groupoids over (\mathit{Sch}/S)_{fppf}. Assume that \mathcal{X} has (RS*) so that we can speak of the functor T_ x(-), see Lemma 98.21.2. Let U = \mathop{\mathrm{Spec}}(A) be an affine scheme of finite type over S which maps into an affine open \mathop{\mathrm{Spec}}(\Lambda ). Let x be an object of \mathcal{X} over U. Assume we are given
a complex of A-modules K^\bullet ,
a transformation of functors T_ x(-) \to H^1(K^\bullet \otimes _ A^\mathbf {L} -),
for every deformation situation (x, A' \to A) with kernel I = \mathop{\mathrm{Ker}}(A' \to A) an element o_ x(A') \in H^2(K^\bullet \otimes _ A^\mathbf {L} I)
satisfying the following (minimal) conditions
the transformation T_ x(-) \to H^1(K^\bullet \otimes _ A^\mathbf {L} -) is an isomorphism,
given a morphism (x, A'' \to A) \to (x, A' \to A) of deformation situations the element o_ x(A') maps to the element o_ x(A'') via the map H^2(K^\bullet \otimes _ A^\mathbf {L} I) \to H^2(K^\bullet \otimes _ A^\mathbf {L} I') where I' = \mathop{\mathrm{Ker}}(A'' \to A), and
x lifts to an object over \mathop{\mathrm{Spec}}(A') if and only if o_ x(A') = 0.
It is possible to incorporate infinitesimal automorphisms as well, but we refrain from doing so in order to get the sharpest possible result.
Comments (0)