Lemma 10.57.1. Let $S$ be a graded ring. A set of homogeneous elements $f_ i \in S_{+}$ generates $S$ as an algebra over $S_0$ if and only if they generate $S_{+}$ as an ideal of $S$.

**Proof.**
If the $f_ i$ generate $S$ as an algebra over $S_0$ then every element in $S_{+}$ is a polynomial without constant term in the $f_ i$ and hence $S_{+}$ is generated by the $f_ i$ as an ideal. Conversely, suppose that $S_{+} = \sum Sf_ i$. We will prove that any element $f$ of $S$ can be written as a polynomial in the $f_ i$ with coefficients in $S_0$. It suffices to do this for homogeneous elements. Say $f$ has degree $d$. Then we may perform induction on $d$. The case $d = 0$ is immediate. If $d > 0$ then $f \in S_{+}$ hence we can write $f = \sum g_ i f_ i$ for some $g_ i \in S$. As $S$ is graded we can replace $g_ i$ by its homogeneous component of degree $d - \deg (f_ i)$. By induction we see that each $g_ i$ is a polynomial in the $f_ i$ and we win.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: