The Stacks project

27.18 Functoriality of relative Proj

This section is the analogue of Section 27.11 for the relative Proj. Let $S$ be a scheme. A graded $\mathcal{O}_ S$-algebra map $\psi : \mathcal{A} \to \mathcal{B}$ does not always give rise to a morphism of associated relative Proj. The correct result is stated as follows.

Lemma 27.18.1. Let $S$ be a scheme. Let $\mathcal{A}$, $\mathcal{B}$ be two graded quasi-coherent $\mathcal{O}_ S$-algebras. Set $p : X = \underline{\text{Proj}}_ S(\mathcal{A}) \to S$ and $q : Y = \underline{\text{Proj}}_ S(\mathcal{B}) \to S$. Let $\psi : \mathcal{A} \to \mathcal{B}$ be a homomorphism of graded $\mathcal{O}_ S$-algebras. There is a canonical open $U(\psi ) \subset Y$ and a canonical morphism of schemes

\[ r_\psi : U(\psi ) \longrightarrow X \]

over $S$ and a map of $\mathbf{Z}$-graded $\mathcal{O}_{U(\psi )}$-algebras

\[ \theta = \theta _\psi : r_\psi ^*\left( \bigoplus \nolimits _{d \in \mathbf{Z}} \mathcal{O}_ X(d) \right) \longrightarrow \bigoplus \nolimits _{d \in \mathbf{Z}} \mathcal{O}_{U(\psi )}(d). \]

The triple $(U(\psi ), r_\psi , \theta )$ is characterized by the property that for any affine open $W \subset S$ the triple

\[ (U(\psi ) \cap p^{-1}W,\quad r_\psi |_{U(\psi ) \cap p^{-1}W} : U(\psi ) \cap p^{-1}W \to q^{-1}W,\quad \theta |_{U(\psi ) \cap p^{-1}W}) \]

is equal to the triple associated to $\psi : \mathcal{A}(W) \to \mathcal{B}(W)$ in Lemma 27.11.1 via the identifications $p^{-1}W = \text{Proj}(\mathcal{A}(W))$ and $q^{-1}W = \text{Proj}(\mathcal{B}(W))$ of Section 27.15.

Proof. This lemma proves itself by glueing the local triples. $\square$

Lemma 27.18.2. Let $S$ be a scheme. Let $\mathcal{A}$, $\mathcal{B}$, and $\mathcal{C}$ be quasi-coherent graded $\mathcal{O}_ S$-algebras. Set $X = \underline{\text{Proj}}_ S(\mathcal{A})$, $Y = \underline{\text{Proj}}_ S(\mathcal{B})$ and $Z = \underline{\text{Proj}}_ S(\mathcal{C})$. Let $\varphi : \mathcal{A} \to \mathcal{B}$, $\psi : \mathcal{B} \to \mathcal{C}$ be graded $\mathcal{O}_ S$-algebra maps. Then we have

\[ U(\psi \circ \varphi ) = r_\varphi ^{-1}(U(\psi )) \quad \text{and} \quad r_{\psi \circ \varphi } = r_\varphi \circ r_\psi |_{U(\psi \circ \varphi )}. \]

In addition we have

\[ \theta _\psi \circ r_\psi ^*\theta _\varphi = \theta _{\psi \circ \varphi } \]

with obvious notation.

Proof. Omitted. $\square$

Lemma 27.18.3. With hypotheses and notation as in Lemma 27.18.1 above. Assume $\mathcal{A}_ d \to \mathcal{B}_ d$ is surjective for $d \gg 0$. Then

  1. $U(\psi ) = Y$,

  2. $r_\psi : Y \to X$ is a closed immersion, and

  3. the maps $\theta : r_\psi ^*\mathcal{O}_ X(n) \to \mathcal{O}_ Y(n)$ are surjective but not isomorphisms in general (even if $\mathcal{A} \to \mathcal{B}$ is surjective).

Proof. Follows on combining Lemma 27.18.1 with Lemma 27.11.3. $\square$

Lemma 27.18.4. With hypotheses and notation as in Lemma 27.18.1 above. Assume $\mathcal{A}_ d \to \mathcal{B}_ d$ is an isomorphism for all $d \gg 0$. Then

  1. $U(\psi ) = Y$,

  2. $r_\psi : Y \to X$ is an isomorphism, and

  3. the maps $\theta : r_\psi ^*\mathcal{O}_ X(n) \to \mathcal{O}_ Y(n)$ are isomorphisms.

Proof. Follows on combining Lemma 27.18.1 with Lemma 27.11.4. $\square$

Lemma 27.18.5. With hypotheses and notation as in Lemma 27.18.1 above. Assume $\mathcal{A}_ d \to \mathcal{B}_ d$ is surjective for $d \gg 0$ and that $\mathcal{A}$ is generated by $\mathcal{A}_1$ over $\mathcal{A}_0$. Then

  1. $U(\psi ) = Y$,

  2. $r_\psi : Y \to X$ is a closed immersion, and

  3. the maps $\theta : r_\psi ^*\mathcal{O}_ X(n) \to \mathcal{O}_ Y(n)$ are isomorphisms.

Proof. Follows on combining Lemma 27.18.1 with Lemma 27.11.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07ZF. Beware of the difference between the letter 'O' and the digit '0'.