27.18 Functoriality of relative Proj
This section is the analogue of Section 27.11 for the relative Proj. Let $S$ be a scheme. A graded $\mathcal{O}_ S$-algebra map $\psi : \mathcal{A} \to \mathcal{B}$ does not always give rise to a morphism of associated relative Proj. The correct result is stated as follows.
Lemma 27.18.1. Let $S$ be a scheme. Let $\mathcal{A}$, $\mathcal{B}$ be two graded quasi-coherent $\mathcal{O}_ S$-algebras. Set $p : X = \underline{\text{Proj}}_ S(\mathcal{A}) \to S$ and $q : Y = \underline{\text{Proj}}_ S(\mathcal{B}) \to S$. Let $\psi : \mathcal{A} \to \mathcal{B}$ be a homomorphism of graded $\mathcal{O}_ S$-algebras. There is a canonical open $U(\psi ) \subset Y$ and a canonical morphism of schemes
\[ r_\psi : U(\psi ) \longrightarrow X \]
over $S$ and a map of $\mathbf{Z}$-graded $\mathcal{O}_{U(\psi )}$-algebras
\[ \theta = \theta _\psi : r_\psi ^*\left( \bigoplus \nolimits _{d \in \mathbf{Z}} \mathcal{O}_ X(d) \right) \longrightarrow \bigoplus \nolimits _{d \in \mathbf{Z}} \mathcal{O}_{U(\psi )}(d). \]
The triple $(U(\psi ), r_\psi , \theta )$ is characterized by the property that for any affine open $W \subset S$ the triple
\[ (U(\psi ) \cap p^{-1}W,\quad r_\psi |_{U(\psi ) \cap p^{-1}W} : U(\psi ) \cap p^{-1}W \to q^{-1}W,\quad \theta |_{U(\psi ) \cap p^{-1}W}) \]
is equal to the triple associated to $\psi : \mathcal{A}(W) \to \mathcal{B}(W)$ in Lemma 27.11.1 via the identifications $p^{-1}W = \text{Proj}(\mathcal{A}(W))$ and $q^{-1}W = \text{Proj}(\mathcal{B}(W))$ of Section 27.15.
Proof.
This lemma proves itself by glueing the local triples.
$\square$
Lemma 27.18.2. Let $S$ be a scheme. Let $\mathcal{A}$, $\mathcal{B}$, and $\mathcal{C}$ be quasi-coherent graded $\mathcal{O}_ S$-algebras. Set $X = \underline{\text{Proj}}_ S(\mathcal{A})$, $Y = \underline{\text{Proj}}_ S(\mathcal{B})$ and $Z = \underline{\text{Proj}}_ S(\mathcal{C})$. Let $\varphi : \mathcal{A} \to \mathcal{B}$, $\psi : \mathcal{B} \to \mathcal{C}$ be graded $\mathcal{O}_ S$-algebra maps. Then we have
\[ U(\psi \circ \varphi ) = r_\varphi ^{-1}(U(\psi )) \quad \text{and} \quad r_{\psi \circ \varphi } = r_\varphi \circ r_\psi |_{U(\psi \circ \varphi )}. \]
In addition we have
\[ \theta _\psi \circ r_\psi ^*\theta _\varphi = \theta _{\psi \circ \varphi } \]
with obvious notation.
Proof.
Omitted.
$\square$
Lemma 27.18.3. With hypotheses and notation as in Lemma 27.18.1 above. Assume $\mathcal{A}_ d \to \mathcal{B}_ d$ is surjective for $d \gg 0$. Then
$U(\psi ) = Y$,
$r_\psi : Y \to X$ is a closed immersion, and
the maps $\theta : r_\psi ^*\mathcal{O}_ X(n) \to \mathcal{O}_ Y(n)$ are surjective but not isomorphisms in general (even if $\mathcal{A} \to \mathcal{B}$ is surjective).
Proof.
Follows on combining Lemma 27.18.1 with Lemma 27.11.3.
$\square$
Lemma 27.18.4. With hypotheses and notation as in Lemma 27.18.1 above. Assume $\mathcal{A}_ d \to \mathcal{B}_ d$ is an isomorphism for all $d \gg 0$. Then
$U(\psi ) = Y$,
$r_\psi : Y \to X$ is an isomorphism, and
the maps $\theta : r_\psi ^*\mathcal{O}_ X(n) \to \mathcal{O}_ Y(n)$ are isomorphisms.
Proof.
Follows on combining Lemma 27.18.1 with Lemma 27.11.4.
$\square$
Lemma 27.18.5. With hypotheses and notation as in Lemma 27.18.1 above. Assume $\mathcal{A}_ d \to \mathcal{B}_ d$ is surjective for $d \gg 0$ and that $\mathcal{A}$ is generated by $\mathcal{A}_1$ over $\mathcal{A}_0$. Then
$U(\psi ) = Y$,
$r_\psi : Y \to X$ is a closed immersion, and
the maps $\theta : r_\psi ^*\mathcal{O}_ X(n) \to \mathcal{O}_ Y(n)$ are isomorphisms.
Proof.
Follows on combining Lemma 27.18.1 with Lemma 27.11.5.
$\square$
Comments (0)