The Stacks project

27.15 Relative Proj via glueing

Situation 27.15.1. Here $S$ is a scheme, and $\mathcal{A}$ is a quasi-coherent graded $\mathcal{O}_ S$-algebra.

In this section we outline how to construct a morphism of schemes

\[ \underline{\text{Proj}}_ S(\mathcal{A}) \longrightarrow S \]

by glueing the homogeneous spectra $\text{Proj}(\Gamma (U, \mathcal{A}))$ where $U$ ranges over the affine opens of $S$. We first show that the homogeneous spectra of the values of $\mathcal{A}$ over affines form a suitable collection of schemes, as in Lemma 27.2.1.

Lemma 27.15.2. In Situation 27.15.1. Suppose $U \subset U' \subset S$ are affine opens. Let $A = \mathcal{A}(U)$ and $A' = \mathcal{A}(U')$. The map of graded rings $A' \to A$ induces a morphism $r : \text{Proj}(A) \to \text{Proj}(A')$, and the diagram

\[ \xymatrix{ \text{Proj}(A) \ar[r] \ar[d] & \text{Proj}(A') \ar[d] \\ U \ar[r] & U' } \]

is cartesian. Moreover there are canonical isomorphisms $\theta : r^*\mathcal{O}_{\text{Proj}(A')}(n) \to \mathcal{O}_{\text{Proj}(A)}(n)$ compatible with multiplication maps.

Proof. Let $R = \mathcal{O}_ S(U)$ and $R' = \mathcal{O}_ S(U')$. Note that the map $R \otimes _{R'} A' \to A$ is an isomorphism as $\mathcal{A}$ is quasi-coherent (see Schemes, Lemma 26.7.3 for example). Hence the lemma follows from Lemma 27.11.6. $\square$

In particular the morphism $\text{Proj}(A) \to \text{Proj}(A')$ of the lemma is an open immersion.

Lemma 27.15.3. In Situation 27.15.1. Suppose $U \subset U' \subset U'' \subset S$ are affine opens. Let $A = \mathcal{A}(U)$, $A' = \mathcal{A}(U')$ and $A'' = \mathcal{A}(U'')$. The composition of the morphisms $r : \text{Proj}(A) \to \text{Proj}(A')$, and $r' : \text{Proj}(A') \to \text{Proj}(A'')$ of Lemma 27.15.2 gives the morphism $r'' : \text{Proj}(A) \to \text{Proj}(A'')$ of Lemma 27.15.2. A similar statement holds for the isomorphisms $\theta $.

Proof. This follows from Lemma 27.11.2 since the map $A'' \to A$ is the composition of $A'' \to A'$ and $A' \to A$. $\square$

Lemma 27.15.4. In Situation 27.15.1. There exists a morphism of schemes

\[ \pi : \underline{\text{Proj}}_ S(\mathcal{A}) \longrightarrow S \]

with the following properties:

  1. for every affine open $U \subset S$ there exists an isomorphism $i_ U : \pi ^{-1}(U) \to \text{Proj}(A)$ with $A = \mathcal{A}(U)$, and

  2. for $U \subset U' \subset S$ affine open the composition

    \[ \xymatrix{ \text{Proj}(A) \ar[r]^{i_ U^{-1}} & \pi ^{-1}(U) \ar[rr]^{inclusion} & & \pi ^{-1}(U') \ar[r]^{i_{U'}} & \text{Proj}(A') } \]

    with $A = \mathcal{A}(U)$, $A' = \mathcal{A}(U')$ is the open immersion of Lemma 27.15.2 above.

Lemma 27.15.5. In Situation 27.15.1. The morphism $\pi : \underline{\text{Proj}}_ S(\mathcal{A}) \to S$ of Lemma 27.15.4 comes with the following additional structure. There exists a quasi-coherent $\mathbf{Z}$-graded sheaf of $\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}$-algebras $\bigoplus \nolimits _{n \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n)$, and a morphism of graded $\mathcal{O}_ S$-algebras

\[ \psi : \mathcal{A} \longrightarrow \bigoplus \nolimits _{n \geq 0} \pi _*\left(\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n)\right) \]

uniquely determined by the following property: For every affine open $U \subset S$ with $A = \mathcal{A}(U)$ there is an isomorphism

\[ \theta _ U : i_ U^*\left( \bigoplus \nolimits _{n \in \mathbf{Z}} \mathcal{O}_{\text{Proj}(A)}(n) \right) \longrightarrow \left( \bigoplus \nolimits _{n \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n) \right)|_{\pi ^{-1}(U)} \]

of $\mathbf{Z}$-graded $\mathcal{O}_{\pi ^{-1}(U)}$-algebras such that

\[ \xymatrix{ A_ n \ar[rr]_\psi \ar[dr]_-{(01MP)} & & \Gamma (\pi ^{-1}(U), \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n)) \\ & \Gamma (\text{Proj}(A), \mathcal{O}_{\text{Proj}(A)}(n)) \ar[ru]_-{\theta _ U} & } \]

is commutative.

Proof. We are going to use Lemma 27.2.2 to glue the sheaves of $\mathbf{Z}$-graded algebras $\bigoplus _{n \in \mathbf{Z}} \mathcal{O}_{\text{Proj}(A)}(n)$ for $A = \mathcal{A}(U)$, $U \subset S$ affine open over the scheme $\underline{\text{Proj}}_ S(\mathcal{A})$. We have constructed the data necessary for this in Lemma 27.15.2 and we have checked condition (d) of Lemma 27.2.2 in Lemma 27.15.3. Hence we get the sheaf of $\mathbf{Z}$-graded $\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}$-algebras $\bigoplus _{n \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n)$ together with the isomorphisms $\theta _ U$ for all $U \subset S$ affine open and all $n \in \mathbf{Z}$. For every affine open $U \subset S$ with $A = \mathcal{A}(U)$ we have a map $A \to \Gamma (\text{Proj}(A), \bigoplus _{n \geq 0} \mathcal{O}_{\text{Proj}(A)}(n))$. Hence the map $\psi $ exists by functoriality of relative glueing, see Remark 27.2.3. The diagram of the lemma commutes by construction. This characterizes the sheaf of $\mathbf{Z}$-graded $\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}$-algebras $\bigoplus \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n)$ because the proof of Lemma 27.11.1 shows that having these diagrams commute uniquely determines the maps $\theta _ U$. Some details omitted. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01NM. Beware of the difference between the letter 'O' and the digit '0'.