Lemma 27.15.2. In Situation 27.15.1. Suppose $U \subset U' \subset S$ are affine opens. Let $A = \mathcal{A}(U)$ and $A' = \mathcal{A}(U')$. The map of graded rings $A' \to A$ induces a morphism $r : \text{Proj}(A) \to \text{Proj}(A')$, and the diagram

is cartesian. Moreover there are canonical isomorphisms $\theta : r^*\mathcal{O}_{\text{Proj}(A')}(n) \to \mathcal{O}_{\text{Proj}(A)}(n)$ compatible with multiplication maps.

## Comments (0)