Lemma 28.24.4. Let $f : X \to Y$ be a quasi-compact and quasi-separated morphism of schemes. Let $\mathcal{I} \subset \mathcal{O}_ Y$ be a quasi-coherent sheaf of ideals of finite type. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $\mathcal{F}' \subset \mathcal{F}$ be the subsheaf of sections annihilated by $f^{-1}\mathcal{I}\mathcal{O}_ X$. Then $f_*\mathcal{F}' \subset f_*\mathcal{F}$ is the subsheaf of sections annihilated by $\mathcal{I}$.
Proof. Omitted. (Hint: The assumption that $f$ is quasi-compact and quasi-separated implies that $f_*\mathcal{F}$ is quasi-coherent so that Lemma 28.24.2 applies to $\mathcal{I}$ and $f_*\mathcal{F}$.) $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: