Example 29.43.2. Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent graded $\mathcal{O}_ S$-algebra generated by $\mathcal{A}_1$ over $\mathcal{A}_0$. Assume furthermore that $\mathcal{A}_1$ is of finite type over $\mathcal{O}_ S$. Set $X = \underline{\text{Proj}}_ S(\mathcal{A})$. In this case $X \to S$ is projective. Namely, the morphism associated to the graded $\mathcal{O}_ S$-algebra map

is a closed immersion, see Constructions, Lemma 27.18.5.

## Comments (2)

Comment #8109 by Laurent Moret-Bailly on

Comment #8220 by Stacks Project on