The Stacks project

Remark 26.21.18. The category of quasi-compact and quasi-separated schemes $\mathcal{C}$ has the following properties. If $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, then any morphism of schemes $f : X \to Y$ is quasi-compact and quasi-separated by Lemmas 26.21.14 and 26.21.13 with $Z = \mathop{\mathrm{Spec}}(\mathbf{Z})$. Moreover, if $X \to Y$ and $Z \to Y$ are morphisms $\mathcal{C}$, then $X \times _ Y Z$ is an object of $\mathcal{C}$ too. Namely, the projection $X \times _ Y Z \to Z$ is quasi-compact and quasi-separated as a base change of the morphism $Z \to Y$, see Lemmas 26.21.12 and 26.19.3. Hence the composition $X \times _ Y Z \to Z \to \mathop{\mathrm{Spec}}(\mathbf{Z})$ is quasi-compact and quasi-separated, see Lemmas 26.21.12 and 26.19.4.


Comments (0)

There are also:

  • 10 comment(s) on Section 26.21: Separation axioms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0816. Beware of the difference between the letter 'O' and the digit '0'.