Proof.
By Lemma 70.9.5 we have \mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i where \mathcal{A}_ i \subset \mathcal{A} runs through the quasi-coherent \mathcal{O}_ X-sub algebras of finite type. Any finite type quasi-coherent \mathcal{O}_ X-subalgebra of \mathcal{A} is finite (use Algebra, Lemma 10.36.5 on affine schemes étale over X). This proves (1).
To prove (2), write \mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i as a colimit of finitely presented \mathcal{O}_ X-modules using Lemma 70.9.1. For each i, let \mathcal{J}_ i be the kernel of the map
\text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i) \longrightarrow \mathcal{A}
For i' \geq i there is an induced map \mathcal{J}_ i \to \mathcal{J}_{i'} and we have \mathcal{A} = \mathop{\mathrm{colim}}\nolimits \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/\mathcal{J}_ i. Moreover, the quasi-coherent \mathcal{O}_ X-algebras \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/\mathcal{J}_ i are finite (see above). Write \mathcal{J}_ i = \mathop{\mathrm{colim}}\nolimits \mathcal{E}_{ik} as a colimit of finitely presented \mathcal{O}_ X-modules. Given i' \geq i and k there exists a k' such that we have a map \mathcal{E}_{ik} \to \mathcal{E}_{i'k'} making
\xymatrix{ \mathcal{J}_ i \ar[r] & \mathcal{J}_{i'} \\ \mathcal{E}_{ik} \ar[u] \ar[r] & \mathcal{E}_{i'k'} \ar[u] }
commute. This follows from Cohomology of Spaces, Lemma 69.5.3. This induces a map
\mathcal{A}_{ik} = \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/(\mathcal{E}_{ik}) \longrightarrow \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_{i'})/(\mathcal{E}_{i'k'}) = \mathcal{A}_{i'k'}
where (\mathcal{E}_{ik}) denotes the ideal generated by \mathcal{E}_{ik}. The quasi-coherent \mathcal{O}_ X-algebras \mathcal{A}_{ki} are of finite presentation and finite for k large enough (see proof of Lemma 70.9.6). Finally, we have
\mathop{\mathrm{colim}}\nolimits \mathcal{A}_{ik} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i = \mathcal{A}
Namely, the first equality was shown in the proof of Lemma 70.9.6 and the second equality because \mathcal{A} is the colimit of the modules \mathcal{F}_ i.
\square
Comments (0)