The Stacks project

Situation 99.7.1. Let $S$ be a scheme. Let $f : X \to B$ be a morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. For any scheme $T$ over $B$ we will denote $X_ T$ the base change of $X$ to $T$ and $\mathcal{F}_ T$ the pullback of $\mathcal{F}$ via the projection morphism $X_ T = X \times _ B T \to X$. Given such a $T$ we set

\[ \text{Q}_{\mathcal{F}/X/B}(T) = \left\{ \begin{matrix} \text{quotients }\mathcal{F}_ T \to \mathcal{Q}\text{ where } \mathcal{Q}\text{ is a} \\ \text{quasi-coherent } \mathcal{O}_{X_ T}\text{-module flat over }T \end{matrix} \right\} \]

We identify quotients if they have the same kernel. Suppose that $T' \to T$ is a morphism of schemes over $B$ and $\mathcal{F}_ T \to \mathcal{Q}$ is an element of $\text{Q}_{\mathcal{F}/X/B}(T)$. Then the pullback $\mathcal{Q}' = (X_{T'} \to X_ T)^*\mathcal{Q}$ is a quasi-coherent $\mathcal{O}_{X_{T'}}$-module flat over $T'$ by Morphisms of Spaces, Lemma 67.31.3. Thus we obtain a functor

99.7.1.1
\begin{equation} \label{quot-equation-q} \text{Q}_{\mathcal{F}/X/B} : (\mathit{Sch}/B)^{opp} \longrightarrow \textit{Sets} \end{equation}

This is the functor of quotients of $\mathcal{F}/X/B$. We define a subfunctor

99.7.1.2
\begin{equation} \label{quot-equation-q-fp} \text{Q}^{fp}_{\mathcal{F}/X/B} : (\mathit{Sch}/B)^{opp} \longrightarrow \textit{Sets} \end{equation}

which assigns to $T$ the subset of $\text{Q}_{\mathcal{F}/X/B}(T)$ consisting of those quotients $\mathcal{F}_ T \to \mathcal{Q}$ such that $\mathcal{Q}$ is of finite presentation as an $\mathcal{O}_{X_ T}$-module. This is a subfunctor by Properties of Spaces, Section 66.30.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 082M. Beware of the difference between the letter 'O' and the digit '0'.