The Stacks project

99.7 The functor of quotients

In this section we discuss some generalities regarding the functor $Q_{\mathcal{F}/X/B}$ defined below. The notation $\mathrm{Quot}_{\mathcal{F}/X/B}$ is reserved for a subfunctor of $\text{Q}_{\mathcal{F}/X/B}$. We urge the reader to skip this section on a first reading.

Situation 99.7.1. Let $S$ be a scheme. Let $f : X \to B$ be a morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. For any scheme $T$ over $B$ we will denote $X_ T$ the base change of $X$ to $T$ and $\mathcal{F}_ T$ the pullback of $\mathcal{F}$ via the projection morphism $X_ T = X \times _ B T \to X$. Given such a $T$ we set

\[ \text{Q}_{\mathcal{F}/X/B}(T) = \left\{ \begin{matrix} \text{quotients }\mathcal{F}_ T \to \mathcal{Q}\text{ where } \mathcal{Q}\text{ is a} \\ \text{quasi-coherent } \mathcal{O}_{X_ T}\text{-module flat over }T \end{matrix} \right\} \]

We identify quotients if they have the same kernel. Suppose that $T' \to T$ is a morphism of schemes over $B$ and $\mathcal{F}_ T \to \mathcal{Q}$ is an element of $\text{Q}_{\mathcal{F}/X/B}(T)$. Then the pullback $\mathcal{Q}' = (X_{T'} \to X_ T)^*\mathcal{Q}$ is a quasi-coherent $\mathcal{O}_{X_{T'}}$-module flat over $T'$ by Morphisms of Spaces, Lemma 67.31.3. Thus we obtain a functor

99.7.1.1
\begin{equation} \label{quot-equation-q} \text{Q}_{\mathcal{F}/X/B} : (\mathit{Sch}/B)^{opp} \longrightarrow \textit{Sets} \end{equation}

This is the functor of quotients of $\mathcal{F}/X/B$. We define a subfunctor

99.7.1.2
\begin{equation} \label{quot-equation-q-fp} \text{Q}^{fp}_{\mathcal{F}/X/B} : (\mathit{Sch}/B)^{opp} \longrightarrow \textit{Sets} \end{equation}

which assigns to $T$ the subset of $\text{Q}_{\mathcal{F}/X/B}(T)$ consisting of those quotients $\mathcal{F}_ T \to \mathcal{Q}$ such that $\mathcal{Q}$ is of finite presentation as an $\mathcal{O}_{X_ T}$-module. This is a subfunctor by Properties of Spaces, Section 66.30.

In Situation 99.7.1 we sometimes think of $\text{Q}_{\mathcal{F}/X/B}$ as a functor $(\mathit{Sch}/S)^{opp} \to \textit{Sets}$ endowed with a morphism $\text{Q}_{\mathcal{F}/X/S} \to B$. Namely, if $T$ is a scheme over $S$, then an element of $\text{Q}_{\mathcal{F}/X/B}(T)$ is a pair $(h, \mathcal{Q})$ where $h$ a morphism $h : T \to B$ and $\mathcal{Q}$ is a $T$-flat quotient $\mathcal{F}_ T \to \mathcal{Q}$ of finite presentation on $X_ T = X \times _{B, h} T$. In particular, when we say that $\text{Q}_{\mathcal{F}/X/S}$ is an algebraic space, we mean that the corresponding functor $(\mathit{Sch}/S)^{opp} \to \textit{Sets}$ is an algebraic space. Similar remarks apply to $\text{Q}^{fp}_{\mathcal{F}/X/B}$.

Remark 99.7.2. In Situation 99.7.1 let $B' \to B$ be a morphism of algebraic spaces over $S$. Set $X' = X \times _ B B'$ and denote $\mathcal{F}'$ the pullback of $\mathcal{F}$ to $X'$. Thus we have the functor $Q_{\mathcal{F}'/X'/B'}$ on the category of schemes over $B'$. For a scheme $T$ over $B'$ it is clear that we have

\[ Q_{\mathcal{F}'/X'/B'}(T) = Q_{\mathcal{F}/X/B}(T) \]

where on the right hand side we think of $T$ as a scheme over $B$ via the composition $T \to B' \to B$. Similar remarks apply to $\text{Q}^{fp}_{\mathcal{F}/X/B}$. These trivial remarks will occasionally be useful to change the base algebraic space.

Remark 99.7.3. Let $S$ be a scheme, $X$ an algebraic space over $S$, and $\mathcal{F}$ a quasi-coherent $\mathcal{O}_ X$-module. Suppose that $\{ f_ i : X_ i \to X\} _{i \in I}$ is an fpqc covering and for each $i, j \in I$ we are given an fpqc covering $\{ X_{ijk} \to X_ i \times _ X X_ j\} $. In this situation we have a bijection

\[ \left\{ \begin{matrix} \text{quotients }\mathcal{F} \to \mathcal{Q}\text{ where } \\ \mathcal{Q}\text{ is a quasi-coherent } \\ \end{matrix} \right\} \longrightarrow \left\{ \begin{matrix} \text{families of quotients }f_ i^*\mathcal{F} \to \mathcal{Q}_ i \text{ where } \\ \mathcal{Q}_ i\text{ is quasi-coherent and } \mathcal{Q}_ i\text{ and }\mathcal{Q}_ j \\ \text{ restrict to the same quotient on }X_{ijk} \end{matrix} \right\} \]

Namely, let $(f_ i^*\mathcal{F} \to \mathcal{Q}_ i)_{i \in I}$ be an element of the right hand side. Then since $\{ X_{ijk} \to X_ i \times _ X X_ j\} $ is an fpqc covering we see that the pullbacks of $\mathcal{Q}_ i$ and $\mathcal{Q}_ j$ restrict to the same quotient of the pullback of $\mathcal{F}$ to $X_ i \times _ X X_ j$ (by fully faithfulness in Descent on Spaces, Proposition 74.4.1). Hence we obtain a descent datum for quasi-coherent modules with respect to $\{ X_ i \to X\} _{i \in I}$. By Descent on Spaces, Proposition 74.4.1 we find a map of quasi-coherent $\mathcal{O}_ X$-modules $\mathcal{F} \to \mathcal{Q}$ whose restriction to $X_ i$ recovers the given maps $f_ i^*\mathcal{F} \to \mathcal{Q}_ i$. Since the family of morphisms $\{ X_ i \to X\} $ is jointly surjective and flat, for every point $x \in |X|$ there exists an $i$ and a point $x_ i \in |X_ i|$ mapping to $x$. Note that the induced map on local rings $\mathcal{O}_{X, \overline{x}} \to \mathcal{O}_{X_ i, \overline{x_ i}}$ is faithfully flat, see Morphisms of Spaces, Section 67.30. Thus we see that $\mathcal{F} \to \mathcal{Q}$ is surjective.

Lemma 99.7.4. In Situation 99.7.1. The functors $\text{Q}_{\mathcal{F}/X/B}$ and $\text{Q}^{fp}_{\mathcal{F}/X/B}$ satisfy the sheaf property for the fpqc topology.

Proof. Let $\{ T_ i \to T\} _{i \in I}$ be an fpqc covering of schemes over $S$. Set $X_ i = X_{T_ i} = X \times _ S T_ i$ and $\mathcal{F}_ i = \mathcal{F}_{T_ i}$. Note that $\{ X_ i \to X_ T\} _{i \in I}$ is an fpqc covering of $X_ T$ (Topologies on Spaces, Lemma 73.9.3) and that $X_{T_ i \times _ T T_{i'}} = X_ i \times _{X_ T} X_{i'}$. Suppose that $\mathcal{F}_ i \to \mathcal{Q}_ i$ is a collection of elements of $\text{Q}_{\mathcal{F}/X/B}(T_ i)$ such that $\mathcal{Q}_ i$ and $\mathcal{Q}_{i'}$ restrict to the same element of $\text{Q}_{\mathcal{F}/X/B}(T_ i \times _ T T_{i'})$. By Remark 99.7.3 we obtain a surjective map of quasi-coherent $\mathcal{O}_{X_ T}$-modules $\mathcal{F}_ T \to \mathcal{Q}$ whose restriction to $X_ i$ recovers the given quotients. By Morphisms of Spaces, Lemma 67.31.5 we see that $\mathcal{Q}$ is flat over $T$. Finally, in the case of $\text{Q}^{fp}_{\mathcal{F}/X/B}$, i.e., if $\mathcal{Q}_ i$ are of finite presentation, then Descent on Spaces, Lemma 74.6.2 guarantees that $\mathcal{Q}$ is of finite presentation as an $\mathcal{O}_{X_ T}$-module. $\square$

Sanity check: $\text{Q}_{\mathcal{F}/X/B}$, $\text{Q}^{fp}_{\mathcal{F}/X/B}$ play the same role among algebraic spaces over $S$.

Lemma 99.7.5. In Situation 99.7.1. Let $T$ be an algebraic space over $S$. We have

\[ \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{fppf})}(T, \text{Q}_{\mathcal{F}/X/B}) = \left\{ \begin{matrix} (h, \mathcal{F}_ T \to \mathcal{Q}) \text{ where } h : T \to B \text{ and} \\ \mathcal{Q}\text{ is quasi-coherent and flat over }T \end{matrix} \right\} \]

where $\mathcal{F}_ T$ denotes the pullback of $\mathcal{F}$ to the algebraic space $X \times _{B, h} T$. Similarly, we have

\[ \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{fppf})}(T, \text{Q}^{fp}_{\mathcal{F}/X/B}) = \left\{ \begin{matrix} (h, \mathcal{F}_ T \to \mathcal{Q}) \text{ where } h : T \to B \text{ and} \\ \mathcal{Q}\text{ is of finite presentation and flat over }T \end{matrix} \right\} \]

Proof. Choose a scheme $U$ and a surjective étale morphism $p : U \to T$. Let $R = U \times _ T U$ with projections $t, s : R \to U$.

Let $v : T \to \text{Q}_{\mathcal{F}/X/B}$ be a natural transformation. Then $v(p)$ corresponds to a pair $(h_ U, \mathcal{F}_ U \to \mathcal{Q}_ U)$ over $U$. As $v$ is a transformation of functors we see that the pullbacks of $(h_ U, \mathcal{F}_ U \to \mathcal{Q}_ U)$ by $s$ and $t$ agree. Since $T = U/R$ (Spaces, Lemma 65.9.1), we obtain a morphism $h : T \to B$ such that $h_ U = h \circ p$. By Descent on Spaces, Proposition 74.4.1 the quotient $\mathcal{Q}_ U$ descends to a quotient $\mathcal{F}_ T \to \mathcal{Q}$ over $X_ T$. Since $U \to T$ is surjective and flat, it follows from Morphisms of Spaces, Lemma 67.31.5 that $\mathcal{Q}$ is flat over $T$.

Conversely, let $(h, \mathcal{F}_ T \to \mathcal{Q})$ be a pair over $T$. Then we get a natural transformation $v : T \to \text{Q}_{\mathcal{F}/X/B}$ by sending a morphism $a : T' \to T$ where $T'$ is a scheme to $(h \circ a, \mathcal{F}_{T'} \to a^*\mathcal{Q})$. We omit the verification that the construction of this and the previous paragraph are mutually inverse.

In the case of $\text{Q}^{fp}_{\mathcal{F}/X/B}$ we add: given a morphism $h : T \to B$, a quasi-coherent sheaf on $X_ T$ is of finite presentation as an $\mathcal{O}_{X_ T}$-module if and only if the pullback to $X_ U$ is of finite presentation as an $\mathcal{O}_{X_ U}$-module. This follows from the fact that $X_ U \to X_ T$ is surjective and étale and Descent on Spaces, Lemma 74.6.2. $\square$

Lemma 99.7.6. In Situation 99.7.1 let $\{ X_ i \to X\} _{i \in I}$ be an fpqc covering and for each $i, j \in I$ let $\{ X_{ijk} \to X_ i \times _ X X_ j\} $ be an fpqc covering. Denote $\mathcal{F}_ i$, resp. $\mathcal{F}_{ijk}$ the pullback of $\mathcal{F}$ to $X_ i$, resp. $X_{ijk}$. For every scheme $T$ over $B$ the diagram

\[ \xymatrix{ Q_{\mathcal{F}/X/B}(T) \ar[r] & \prod \nolimits _ i Q_{\mathcal{F}_ i/X_ i/B}(T) \ar@<1ex>[r]^-{\text{pr}_0^*} \ar@<-1ex>[r]_-{\text{pr}_1^*} & \prod \nolimits _{i, j, k} Q_{\mathcal{F}_{ijk}/X_{ijk}/B}(T) } \]

presents the first arrow as the equalizer of the other two. The same is true for the functor $\text{Q}^{fp}_{\mathcal{F}/X/B}$.

Proof. Let $\mathcal{F}_{i, T} \to \mathcal{Q}_ i$ be an element in the equalizer of $\text{pr}_0^*$ and $\text{pr}_1^*$. By Remark 99.7.3 we obtain a surjection $\mathcal{F}_ T \to \mathcal{Q}$ of quasi-coherent $\mathcal{O}_{X_ T}$-modules whose restriction to $X_{i, T}$ recovers $\mathcal{F}_ i \to \mathcal{Q}_ i$. By Morphisms of Spaces, Lemma 67.31.5 we see that $\mathcal{Q}$ is flat over $T$ as desired. In the case of the functor $\text{Q}^{fp}_{\mathcal{F}/X/B}$, i.e., if $\mathcal{Q}_ i$ is of finite presentation, then $\mathcal{Q}$ is of finite presentation too by Descent on Spaces, Lemma 74.6.2. $\square$

Lemma 99.7.7. In Situation 99.7.1 assume also that (a) $f$ is quasi-compact and quasi-separated and (b) $\mathcal{F}$ is of finite presentation. Then the functor $\text{Q}^{fp}_{\mathcal{F}/X/B}$ is limit preserving in the following sense: If $T = \mathop{\mathrm{lim}}\nolimits T_ i$ is a directed limit of affine schemes over $B$, then $\text{Q}^{fp}_{\mathcal{F}/X/B}(T) = \mathop{\mathrm{colim}}\nolimits \text{Q}^{fp}_{\mathcal{F}/X/B}(T_ i)$.

Proof. Let $T = \mathop{\mathrm{lim}}\nolimits T_ i$ be as in the statement of the lemma. Choose $i_0 \in I$ and replace $I$ by $\{ i \in I \mid i \geq i_0\} $. We may set $B = S = T_{i_0}$ and we may replace $X$ by $X_{T_0}$ and $\mathcal{F}$ by the pullback to $X_{T_0}$. Then $X_ T = \mathop{\mathrm{lim}}\nolimits X_{T_ i}$, see Limits of Spaces, Lemma 70.4.1. Let $\mathcal{F}_ T \to \mathcal{Q}$ be an element of $\text{Q}^{fp}_{\mathcal{F}/X/B}(T)$. By Limits of Spaces, Lemma 70.7.2 there exists an $i$ and a map $\mathcal{F}_{T_ i} \to \mathcal{Q}_ i$ of $\mathcal{O}_{X_{T_ i}}$-modules of finite presentation whose pullback to $X_ T$ is the given quotient map.

We still have to check that, after possibly increasing $i$, the map $\mathcal{F}_{T_ i} \to \mathcal{Q}_ i$ is surjective and $\mathcal{Q}_ i$ is flat over $T_ i$. To do this, choose an affine scheme $U$ and a surjective étale morphism $U \to X$ (see Properties of Spaces, Lemma 66.6.3). We may check surjectivity and flatness over $T_ i$ after pulling back to the étale cover $U_{T_ i} \to X_{T_ i}$ (by definition). This reduces us to the case where $X = \mathop{\mathrm{Spec}}(B_0)$ is an affine scheme of finite presentation over $B = S = T_0 = \mathop{\mathrm{Spec}}(A_0)$. Writing $T_ i = \mathop{\mathrm{Spec}}(A_ i)$, then $T = \mathop{\mathrm{Spec}}(A)$ with $A = \mathop{\mathrm{colim}}\nolimits A_ i$ we have reached the following algebra problem. Let $M_ i \to N_ i$ be a map of finitely presented $B_0 \otimes _{A_0} A_ i$-modules such that $M_ i \otimes _{A_ i} A \to N_ i \otimes _{A_ i} A$ is surjective and $N_ i \otimes _{A_ i} A$ is flat over $A$. Show that for some $i' \geq i$ $M_ i \otimes _{A_ i} A_{i'} \to N_ i \otimes _{A_ i} A_{i'}$ is surjective and $N_ i \otimes _{A_ i} A_{i'}$ is flat over $A$. The first follows from Algebra, Lemma 10.127.5 and the second from Algebra, Lemma 10.168.1. $\square$

Lemma 99.7.8. In Situation 99.7.1. Let

\[ \xymatrix{ Z \ar[r] \ar[d] & Z' \ar[d] \\ Y \ar[r] & Y' } \]

be a pushout in the category of schemes over $B$ where $Z \to Z'$ is a thickening and $Z \to Y$ is affine, see More on Morphisms, Lemma 37.14.3. Then the natural map

\[ Q_{\mathcal{F}/X/B}(Y') \longrightarrow Q_{\mathcal{F}/X/B}(Y) \times _{Q_{\mathcal{F}/X/B}(Z)} Q_{\mathcal{F}/X/B}(Z') \]

is bijective. If $X \to B$ is locally of finite presentation, then the same thing is true for $Q^{fp}_{\mathcal{F}/X/B}$.

Proof. Let us construct an inverse map. Namely, suppose we have $\mathcal{F}_ Y \to \mathcal{A}$, $\mathcal{F}_{Z'} \to \mathcal{B}'$, and an isomorphism $\mathcal{A}|_{X_ Z} \to \mathcal{B}'|_{X_ Z}$ compatible with the given surjections. Then we apply Pushouts of Spaces, Lemma 81.6.6 to get a quasi-coherent module $\mathcal{A}'$ on $X_{Y'}$ flat over $Y'$. Since this sheaf is constructed as a fibre product (see proof of cited lemma) there is a canonical map $\mathcal{F}_{Y'} \to \mathcal{A}'$. That this map is surjective can be seen because it factors as

\[ \begin{matrix} \mathcal{F}_{Y'} \\ \downarrow \\ (X_ Y \to X_{Y'})_*\mathcal{F}_ Y \times _{(X_ Z \to X_{Y'})_*\mathcal{F}_ Z} (X_{Z'} \to X_{Y'})_*\mathcal{F}_{Z'} \\ \downarrow \\ \mathcal{A}' = (X_ Y \to X_{Y'})_*\mathcal{A} \times _{(X_ Z \to X_{Y'})_*\mathcal{A}|_{X_ Z}} (X_{Z'} \to X_{Y'})_*\mathcal{B}' \end{matrix} \]

and the first arrow is surjective by More on Algebra, Lemma 15.6.5 and the second by More on Algebra, Lemma 15.6.6.

In the case of $Q^{fp}_{\mathcal{F}/X/B}$ all we have to show is that the construction above produces a finitely presented module. This is explained in More on Algebra, Remark 15.7.8 in the commutative algebra setting. The current case of modules over algebraic spaces follows from this by étale localization. $\square$

Remark 99.7.9 (Obstructions for quotients). In Situation 99.7.1 assume that $\mathcal{F}$ is flat over $B$. Let $T \subset T'$ be an first order thickening of schemes over $B$ with ideal sheaf $\mathcal{J}$. Then $X_ T \subset X_{T'}$ is a first order thickening of algebraic spaces whose ideal sheaf $\mathcal{I}$ is a quotient of $f_ T^*\mathcal{J}$. We will think of sheaves on $X_{T'}$, resp. $T'$ as sheaves on $X_ T$, resp. $T$ using the fundamental equivalence described in More on Morphisms of Spaces, Section 76.9. Let

\[ 0 \to \mathcal{K} \to \mathcal{F}_ T \to \mathcal{Q} \to 0 \]

define an element $x$ of $Q_{\mathcal{F}/X/B}(T)$. Since $\mathcal{F}_{T'}$ is flat over $T'$ we have a short exact sequence

\[ 0 \to f_ T^*\mathcal{J} \otimes _{\mathcal{O}_{X_ T}} \mathcal{F}_ T \xrightarrow {i} \mathcal{F}_{T'} \xrightarrow {\pi } \mathcal{F}_ T \to 0 \]

and we have $f_ T^*\mathcal{J} \otimes _{\mathcal{O}_{X_ T}} \mathcal{F}_ T = \mathcal{I} \otimes _{\mathcal{O}_{X_ T}} \mathcal{F}_ T$, see Deformation Theory, Lemma 91.11.2. Let us use the abbreviation $ f_ T^*\mathcal{J} \otimes _{\mathcal{O}_{X_ T}} \mathcal{G} = \mathcal{G} \otimes _{\mathcal{O}_ T} \mathcal{J} $ for an $\mathcal{O}_{X_ T}$-module $\mathcal{G}$. Since $\mathcal{Q}$ is flat over $T$, we obtain a short exact sequence

\[ 0 \to \mathcal{K} \otimes _{\mathcal{O}_ T} \mathcal{J} \to \mathcal{F}_ T \otimes _{\mathcal{O}_ T} \mathcal{J} \to \mathcal{Q} \otimes _{\mathcal{O}_ T} \mathcal{J} \to \to 0 \]

Combining the above we obtain an canonical extension

\[ 0 \to \mathcal{Q} \otimes _{\mathcal{O}_ T} \mathcal{J} \to \pi ^{-1}(\mathcal{K})/i(\mathcal{K} \otimes _{\mathcal{O}_ T} \mathcal{J}) \to \mathcal{K} \to 0 \]

of $\mathcal{O}_{X_ T}$-modules. This defines a canonical class

\[ o_ x(T') \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_{X_ T}}(\mathcal{K}, \mathcal{Q} \otimes _{\mathcal{O}_ T} \mathcal{J}) \]

If $o_ x(T')$ is zero, then we obtain a splitting of the short exact sequence defining it, in other words, we obtain a $\mathcal{O}_{X_{T'}}$-submodule $\mathcal{K}' \subset \pi ^{-1}(\mathcal{K})$ sitting in a short exact sequence $0 \to \mathcal{K} \otimes _{\mathcal{O}_ T} \mathcal{J} \to \mathcal{K}' \to \mathcal{K} \to 0$. Then it follows from the lemma reference above that $\mathcal{Q}' = \mathcal{F}_{T'}/\mathcal{K}'$ is a lift of $x$ to an element of $Q_{\mathcal{F}/X/B}(T')$. Conversely, the reader sees that the existence of a lift implies that $o_ x(T')$ is zero. Moreover, if $x \in Q_{\mathcal{F}/X/B}^{fp}(T)$, then automatically $x' \in Q_{\mathcal{F}/X/B}^{fp}(T')$ by Deformation Theory, Lemma 91.11.3. If we ever need this remark we will turn this remark into a lemma, precisely formulate the result and give a detailed proof (in fact, all of the above works in the setting of arbitrary ringed topoi).

Remark 99.7.10 (Deformations of quotients). In Situation 99.7.1 assume that $\mathcal{F}$ is flat over $B$. We continue the discussion of Remark 99.7.9. Assume $o_ x(T') = 0$. Then we claim that the set of lifts $x' \in Q_{\mathcal{F}/X/B}(T')$ is a principal homogeneous space under the group

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X_ T}}(\mathcal{K}, \mathcal{Q} \otimes _{\mathcal{O}_ T} \mathcal{J}) \]

Namely, given any $\mathcal{F}_{T'} \to \mathcal{Q}'$ flat over $T'$ lifting the quotient $\mathcal{Q}$ we obtain a commutative diagram with exact rows and columns

\[ \xymatrix{ & 0 \ar[d] & 0 \ar[d] & 0 \ar[d] \\ 0 \ar[r] & \mathcal{K} \otimes \mathcal{J} \ar[r] \ar[d] & \mathcal{F}_ T \otimes \mathcal{J} \ar[r] \ar[d] & \mathcal{Q} \otimes \mathcal{J} \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \mathcal{K}' \ar[r] \ar[d] & \mathcal{F}_{T'} \ar[r] \ar[d] & \mathcal{Q}' \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \mathcal{K} \ar[d] \ar[r] & \mathcal{F}_ T \ar[d] \ar[r] & \mathcal{Q} \ar[d] \ar[r] & 0 \\ & 0 & 0 & 0 } \]

(to see this use the observations made in the previous remark). Given a map $\varphi : \mathcal{K} \to \mathcal{Q} \otimes \mathcal{J}$ we can consider the subsheaf $\mathcal{K}'_\varphi \subset \mathcal{F}_{T'}$ consisting of those local sections $s$ whose image in $\mathcal{F}_ T$ is a local section $k$ of $\mathcal{K}$ and whose image in $\mathcal{Q}'$ is the local section $\varphi (k)$ of $\mathcal{Q} \otimes \mathcal{J}$. Then set $\mathcal{Q}'_\varphi = \mathcal{F}_{T'}/\mathcal{K}'_\varphi $. Conversely, any second lift of $x$ corresponds to one of the qotients constructed in this manner. If we ever need this remark we will turn this remark into a lemma, precisely formulate the result and give a detailed proof (in fact, all of the above works in the setting of arbitrary ringed topoi).


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 082L. Beware of the difference between the letter 'O' and the digit '0'.