The Stacks project

Remark 99.7.9 (Obstructions for quotients). In Situation 99.7.1 assume that $\mathcal{F}$ is flat over $B$. Let $T \subset T'$ be an first order thickening of schemes over $B$ with ideal sheaf $\mathcal{J}$. Then $X_ T \subset X_{T'}$ is a first order thickening of algebraic spaces whose ideal sheaf $\mathcal{I}$ is a quotient of $f_ T^*\mathcal{J}$. We will think of sheaves on $X_{T'}$, resp. $T'$ as sheaves on $X_ T$, resp. $T$ using the fundamental equivalence described in More on Morphisms of Spaces, Section 76.9. Let

\[ 0 \to \mathcal{K} \to \mathcal{F}_ T \to \mathcal{Q} \to 0 \]

define an element $x$ of $Q_{\mathcal{F}/X/B}(T)$. Since $\mathcal{F}_{T'}$ is flat over $T'$ we have a short exact sequence

\[ 0 \to f_ T^*\mathcal{J} \otimes _{\mathcal{O}_{X_ T}} \mathcal{F}_ T \xrightarrow {i} \mathcal{F}_{T'} \xrightarrow {\pi } \mathcal{F}_ T \to 0 \]

and we have $f_ T^*\mathcal{J} \otimes _{\mathcal{O}_{X_ T}} \mathcal{F}_ T = \mathcal{I} \otimes _{\mathcal{O}_{X_ T}} \mathcal{F}_ T$, see Deformation Theory, Lemma 91.11.2. Let us use the abbreviation $ f_ T^*\mathcal{J} \otimes _{\mathcal{O}_{X_ T}} \mathcal{G} = \mathcal{G} \otimes _{\mathcal{O}_ T} \mathcal{J} $ for an $\mathcal{O}_{X_ T}$-module $\mathcal{G}$. Since $\mathcal{Q}$ is flat over $T$, we obtain a short exact sequence

\[ 0 \to \mathcal{K} \otimes _{\mathcal{O}_ T} \mathcal{J} \to \mathcal{F}_ T \otimes _{\mathcal{O}_ T} \mathcal{J} \to \mathcal{Q} \otimes _{\mathcal{O}_ T} \mathcal{J} \to \to 0 \]

Combining the above we obtain an canonical extension

\[ 0 \to \mathcal{Q} \otimes _{\mathcal{O}_ T} \mathcal{J} \to \pi ^{-1}(\mathcal{K})/i(\mathcal{K} \otimes _{\mathcal{O}_ T} \mathcal{J}) \to \mathcal{K} \to 0 \]

of $\mathcal{O}_{X_ T}$-modules. This defines a canonical class

\[ o_ x(T') \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_{X_ T}}(\mathcal{K}, \mathcal{Q} \otimes _{\mathcal{O}_ T} \mathcal{J}) \]

If $o_ x(T')$ is zero, then we obtain a splitting of the short exact sequence defining it, in other words, we obtain a $\mathcal{O}_{X_{T'}}$-submodule $\mathcal{K}' \subset \pi ^{-1}(\mathcal{K})$ sitting in a short exact sequence $0 \to \mathcal{K} \otimes _{\mathcal{O}_ T} \mathcal{J} \to \mathcal{K}' \to \mathcal{K} \to 0$. Then it follows from the lemma reference above that $\mathcal{Q}' = \mathcal{F}_{T'}/\mathcal{K}'$ is a lift of $x$ to an element of $Q_{\mathcal{F}/X/B}(T')$. Conversely, the reader sees that the existence of a lift implies that $o_ x(T')$ is zero. Moreover, if $x \in Q_{\mathcal{F}/X/B}^{fp}(T)$, then automatically $x' \in Q_{\mathcal{F}/X/B}^{fp}(T')$ by Deformation Theory, Lemma 91.11.3. If we ever need this remark we will turn this remark into a lemma, precisely formulate the result and give a detailed proof (in fact, all of the above works in the setting of arbitrary ringed topoi).


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CZU. Beware of the difference between the letter 'O' and the digit '0'.